Explicit two-sided uniqueneighbor expanders

Theo McKenzie Stanford

Sidhanth Mohanty MIT

Jun-Ting (Tim) Hsieh, CMU

Joint work with

Pedro Paredes Princeton

Unique-neighbor

G graph, $S \subseteq V(G)$

Unique-neighbor

G graph, $S \subseteq V(G)$

Unique-neighbor of S vertex with exactly *one* edge to *S*.

Unique-neighbor expander

G graph, $S \subseteq V(G)$

Unique-neighbor of S vertex with exactly *one* edge to *S*.

Unique-neighbor expander every small set has many unique-neighbors.

Unique-neighbor expander

(1-sided) Unique-neighbor expander $\forall S \subseteq L \text{ s.t. } |S| \leq \delta |L|:$ $|UN(S)| \geq \gamma \cdot d |S|$ $\delta, \gamma > 0 \text{ constants},$ d degree.

Eigenvalues of adjacency matrix of G

$\lambda_2(G)$ is spectral expansion of G

Eigenvalues of adjacency matrix of G

$\lambda_2(G)$ is spectral expansion of *G*

Spectral expansion implies many *nice* combinatorial properties! - *no sparse cuts* - *no dense small subgraphs* - *rapid mixing of random walks*

Eigenvalues of adjacency matrix of G

$\lambda_2(G)$ is spectral expansion of G

Spectral expansion implies many *nice* combinatorial properties! - *no sparse cuts* - *no dense small subgraphs* - *rapid mixing of random walks*

Many known constructions!

Cayley graphs, zig-zag product, derandomization, interlacing polynomials

Eigenvalues of adjacency matrix of G

$\lambda_2(G)$ is spectral expansion of *G*

Ramanujan graphs Best spectral expanders $\lambda_2(G) \le 2\sqrt{d-1}$

Eigenvalues of adjacency matrix of G

 $\lambda_2(G)$ is spectral expansion of G

Ramanujan graphs Best spectral expanders $\lambda_2(G) \le 2\sqrt{d-1}$

Spectral expansion \implies Unique-neighbor expansion

Spectral vs. small-set vertex expansion [Kahale'95] Small-set vertex expansion in **Ramanujan graphs** $\geq d/2$

 $\lambda_2(G)$ is spectral expansion of G

Ramanujan graphs Best spectral expanders $\lambda_2(G) \le 2\sqrt{d-1}$

Spectral vs. small-set vertex expansion [Kahale'95] Small-set vertex expansion in **Ramanujan graphs** $\geq d/2$

Barely falls short of UNE!

 $\lambda_2(G)$ is spectral expansion of G

Ramanujan graphs Best spectral expanders $\lambda_2(G) \leq 2\sqrt{d-1}$

Spectral vs. small-set vertex expansion [Kahale'95] Small-set vertex expansion in Ramanujan graphs $\geq d/2$

3 Ramanujan graphs with small sets having *zero* unique-neighbors [Kahale'95, Mohanty-McKenzie'21, Kamber-Kaufman'22]!

Spectral expansion $\Rightarrow Unique-neighbor expansion$

 $\lambda_2(G)$ is spectral expansion of *G*

Ramanujan graphs Best spectral expanders $\lambda_2(G) \le 2\sqrt{d-1}$

LDPC codes 1-sided unique-neighbor expansion for δ -sized sets \implies distance $\geq \delta$.

Applications

Parity checks

Previous constructions

Explicit constructions [Alon-Capalbo'02, Capalbo-Reingold-Vadhan-Wigderson'02, Asherov-Dinur'23, Golowich'24]:

- Any constant imbalance |R|/|L|.

• 1-sided **lossless** expanders (having $(1 - \varepsilon) \cdot d | S|$ unique-neighbors, not just $\Omega(d) \cdot |S|$).

Previous constructions

Explicit constructions [Alon-Capalbo'02, Capalbo-Reingold-Vadhan-Wigderson'02, Asherov-Dinur'23, Golowich'24]:

- Any constant imbalance |R|/|L|.

All previous explicit constructions are 1-sided only!

• 1-sided lossless expanders (having $(1 - \varepsilon) \cdot d | S|$ unique-neighbors, not just $\Omega(d) \cdot |S|$).

2-sided unique-neighbor expander

- For every $\delta |L|$ -sized $S \subseteq L$ $|UN(S)| \ge \gamma \cdot d_1 |S|$
- For every $\delta |R|$ -sized $S \subseteq R$ $|UN(S)| \ge \gamma \cdot d_2 |S|$

 $\delta, \gamma > 0$ constants d_1 left-degree, d_2 right-degree

UN(S)

2-sided unique-neighbor expander

- For every $\delta |L|$ -sized $S \subseteq L$ $|UN(S)| \ge \gamma \cdot d_1 |S|$
- For every $\delta |R|$ -sized $S \subseteq R$ $|UN(S)| \ge \gamma \cdot d_2 |S|$
 - $\delta, \gamma > 0$ constants d_1 left-degree, d_2 right-degree

This work: *explicit constructions* of 2-*sided* bipartite unique-neighbor expanders with arbitrary *balance* |R|/|L|.

Motivation for 2-sided expanders

Random graphs have this property, can we derandomize?

Motivation for 2-sided expanders

Quantum LDPC codes [Lin-M. Hsieh'22]: 2-sided "algebraic" lossless expanders \implies efficiently decodable quantum LDPC codes!

Random graphs have this property, can we derandomize?

Our results

For d_1 , d_2 large enough: explicit infinite family of (d_1, d_2) -biregular 2-sided unique-neighbor expanders

 $|\text{UN}(S)| \ge \Omega(d) \cdot |S|$ when $|S| \le \delta n$

Our results

For d_1 , d_2 large enough: explicit infinite family of (d_1, d_2) -biregular 2-sided unique-neighbor expanders

 $|\text{UN}(S)| \ge \Omega(d) \cdot |S|$ when $|S| \le \delta n$

In addition, small sets expand losslessly. $|UN(S)| \ge (1 - \varepsilon) \cdot d |S|$ when $|S| \le \exp(O(\sqrt{\log n}))$.

Tripartite Line Product

Base graph LM, MR bipartite spectral expanders (# vertices $\rightarrow \infty$)

Construction

Gadget graph Bipartite lossless expander (O(1)-sized random graph)

Tripartite Line Product

Base graph LM, MR bipartite spectral expanders (# vertices $\rightarrow \infty$)

Construction

Gadget graph Bipartite lossless expander (O(1)-sized random graph)

For each $v \in M$, place copy of gadget H between $N_L(v)$ and $N_R(v)$

Tripartite Line Product

Tripartite Line Product

Copy of *H* between $N_L(v)$ and $N_R(v)$

Tripartite Line Product

Copy of *H* between $N_L(v)$ and $N_R(v)$

After placing all copies

$|\mathrm{UN}(S)| \geq \Omega(d) \cdot |S|$ when $|S| \leq \delta n$

Tripartite Line Product

New results in spectral graph theory

Near-Ramanujan (d_1, d_2)-biregular graphs: $+\sqrt{d_2-1}$ \cdot $(1+\varepsilon)$

$$\lambda_2 \le \left(\sqrt{d_1 - 1}\right)$$

New results in spectral graph theory

Near-Ramanujan (d_1, d_2) -biregular graphs: $\left[+\sqrt{d_2-1} \right) \cdot (1+\varepsilon)$

$$\lambda_2 \le \left(\sqrt{d_1 - 1}\right)$$

Theorem. For a near-Ramanujan (d_1, d_2) -biregular graph G and any $S_1 \subseteq L$, $S_2 \subseteq R$ of "linear" size, the left and right average degrees \tilde{d}_1 , \tilde{d}_2 of $G[S_1 \cup S_2]$ satisfy $(\tilde{d}_1 - 1)(\tilde{d}_2 - 1) \le \sqrt{(d_1 - 1)(d_2 - 1)} \cdot (1 + O(\varepsilon)).$

New results in spectral graph theory

Near-Ramanujan (d_1, d_2) -biregular graphs: $\left[+\sqrt{d_2-1} \right) \cdot (1+\varepsilon)$

$$\lambda_2 \le \left(\sqrt{d_1 - 1}\right)$$

Theorem. For a near-Ramanujan (d_1, d_2) -biregular graph G and any $S_1 \subseteq L$, $S_2 \subseteq R$ of "linear" size, the left and right average degrees \tilde{d}_1 , \tilde{d}_2 of $G[S_1 \cup S_2]$ satisfy $(\tilde{d}_1 - 1)(\tilde{d}_2 - 1) \le \sqrt{(d_1 - 1)}$

$$(d_1 - 1)(d_2 - 1) \cdot (1 + O(\varepsilon)).$$

Upper bound on the spectral radius of the **non-backtracking matrix** of $G[S_1 \cup S_2]$.

Thank you! Questions?