A simple and sharper proof of the hypergraph Moore bound

Jun-Ting (Tim) Hsieh Carnegie Mellon

Pravesh K. Kothari **Carnegie Mellon**

Sidhanth Mohanty UC Berkeley

Girth: length of the shortest cycle.

Girth: length of the shortest cycle.

What's the maximum girth of a graph with *n* vertices and average degree *d*?

Girth: length of the shortest cycle.

What's the maximum girth of a graph with *n* vertices and average degree *d*?

• d = 2: girth n (cycle).

Girth: length of the shortest cycle.

What's the maximum girth of a graph with *n* vertices and average degree *d*?

- d = 2: girth n (cycle).
- What about d = 2.1?

For *d*-regular graphs, the girth $g \le 2 \log_{d-1} n + 2$.

For *d*-regular graphs, the girth $g \le 2 \log_{d-1} n + 2$.

• The g/2 - 1 neighborhood must be a *d*-regular tree.

For *d*-regular graphs, the girth $g \le 2 \log_{d-1} n + 2$.

- The g/2 1 neighborhood must be a *d*-regular tree.
 - Number of leaves is $\geq (d-1)^{g/2-1}$.

For *d*-regular graphs, the girth $g \le 2 \log_{d-1} n + 2$.

- The g/2 1 neighborhood must be a *d*-regular tree.
 - Number of leaves is $\geq (d-1)^{g/2-1}$.
- There are *n* vertices.

For *d*-regular graphs, the girth $g \le 2 \log_{d-1} n + 2$.

- The g/2 1 neighborhood must be a *d*-regular tree.
 - Number of leaves is $\geq (d-1)^{g/2-1}$.
- There are *n* vertices.

So $(d-1)^{g/2-1} \le n \implies g \le 2\log_{d-1}n+2$.

For *d*-regular graphs, the girth $g \le 2 \log_{d-1} n + 2$.

- The g/2 1 neighborhood must be a *d*-regular tree.
 - Number of leaves is $\geq (d-1)^{g/2-1}$.
- There are *n* vertices.

So $(d-1)^{g/2-1} \le n \implies g \le 2\log_{d-1}n+2$.

Bollabas [1978] asked: **irregular** graphs with **average** degree *d* ?

A *k*-uniform hypergraph is just a graph but each hyperedge has *k* vertices.

Cycles in hypergraphs

A *k*-uniform hypergraph is just a graph but each hyperedge has *k* vertices. A **cycle** in a hypergraph (a.k.a. **even cover**) is a set of hyperedges such that every vertex participates in an **even** number of them.

Cycles in hypergraphs

A *k*-uniform hypergraph is just a graph but each hyperedge has *k* vertices. A **cycle** in a hypergraph (a.k.a. **even cover**) is a set of hyperedges such that every vertex participates in an **even** number of them.

Cycles in hypergraphs

A *k*-uniform hypergraph is just a graph but each hyperedge has *k* vertices. A **cycle** in a hypergraph (a.k.a. **even cover**) is a set of hyperedges such that every vertex participates in an **even** number of them.

For graphs: Even cover ⇔ union of cycles

Another view:

Even cover \Leftrightarrow linearly dependent columns (mod 2).

Even cover \Leftrightarrow linearly dependent columns (mod 2).

Girth = size of a smallest linearly dependent subset of columns.

Even cover \Leftrightarrow linearly dependent columns (mod 2).

Even cover \Leftrightarrow linearly dependent columns (mod 2).

Easy: hypergraphs with *n* vertices and $m \ge n + 1$ hyperedges must have an even cover of size $\le n + 1$.

Even cover \Leftrightarrow linearly dependent columns (mod 2). Easy: hypergraphs with *n* vertices and $m \ge n + 1$ hyperedges must have an even cover of size $\le n + 1$.

Even cover \Leftrightarrow linearly dependent columns (mod 2). **Easy**: hypergraphs with *n* vertices and $m \ge n + 1$ hyperedges must have an even cover of size $\le n + 1$.

Even cover \Leftrightarrow linearly dependent columns (mod 2). **Easy**: hypergraphs with *n* vertices and $m \ge n + 1$ hyperedges must have an even cover of size $\le n + 1$

Feige's conjecture

Conjecture: For $1 \le r \le n$, every *k*-uniform hypergraph with *n* vertices and $m \ge n \left(\frac{n}{r}\right)^{\frac{k}{2}-1}$ hyperedges has an even cover of size $O(r \log n)$.

Feige's conjecture

Conjecture: For $1 \le r \le n$, every *k*-uniform hypergraph with *n* vertices and $m \ge n \left(\frac{n}{r}\right)^{\frac{k}{2}-1}$ hyperedges has an even cover of size $O(r \log n)$.

Guruswami, Kothari and Manohar [2022]

Theorem: every *k*-uniform *H* with *n* vertices, $m \gtrsim n \left(\frac{n}{r}\right)^{\frac{k}{2}-1} \log^{4k+1} n$

hyperedges \implies even cover of size $O(r \log n)$.

Guruswami, Kothari and Manohar [2022]

Theorem: every *k*-uniform *H* with *n* vertices, $m \gtrsim n \left(\frac{n}{r}\right)^{\frac{k}{2}-1} \log^{4k+1} n$

hyperedges \implies even cover of size $O(r \log n)$.

Guruswami, Kothari and Manohar [2022]

Theorem: every *k*-uniform *H* with *n* vertices, $m \gtrsim n \left(\frac{n}{r}\right)^{\frac{k}{2}-1} \log^{\frac{k}{2}-1} \log^$

hyperedges \implies even cover of size $O(r \log n)$.

Theorem: every *k*-uniform *H* with *n* vertices, $m \gtrsim n \left(\frac{n}{r}\right)^{\frac{k}{2}-1} \log n$

hyperedges \implies even cover of size $O(r \log n)$.

Theorem: every *k*-uniform *H* with *n* vertices, $m \gtrsim n \left(\frac{n}{r}\right)^{\frac{k}{2}-1} \log n$

hyperedges \implies even cover of size $O(r \log n)$.

• Significantly simpler proof.

Theorem: every *k*-uniform *H* with *n* vertices, $m \gtrsim n \left(\frac{n}{r}\right)^{\frac{k}{2}-1} \log n$

hyperedges \implies even cover of size $O(r \log n)$.

• Significantly simpler proof.

Theorem: every *k*-uniform *H* with *n* vertices, $m \gtrsim n \left(\frac{n}{r}\right)^{\frac{k}{2}-1} \log n$

hyperedges \implies even cover of size $O(r \log n)$.

- Significantly simpler proof.
- New proof for the classical Moore bound.

Theorem: every *k*-uniform *H* with *n* vertices, $m \gtrsim n \left(\frac{n}{r}\right)^{\frac{k}{2}-1} \log n$

hyperedges \implies even cover of size $O(r \log n)$.

- Significantly simpler proof.
- New proof for the classical Moore bound.

 $\log^3 n$ factor.

Theorem: every *k*-uniform *H* with *n* vertices, $m \gtrsim n \left(\frac{n}{r}\right)^{\frac{k}{2}-1} \log n$ hyperedges \implies even cover of size $O(r \log n)$.

- Significantly simpler proof.
- New proof for the classical Moore bound.
- Last log: likely not real but difficult to remove.

Kikuchi graph

Introduced by [Wein-Alaoui-Moore'19]

Kikuchi graph

Definition. Given parameter *r*, the Kikuchi graph (associated to the hypergraph *H*) is a graph on vertex set $\binom{[n]}{r}$ and two vertices *S*, *T* are connected if $S \oplus T \in H$. $T \in \binom{[n]}{r}$ Symmetric difference $\lfloor n \rfloor$ $\ni S$ 1 iff $S \oplus T \in H$

Kikuchi graph with r = 4

Claim: Cycles in Kikuchi graph \implies even covers in H.*

Claim: Cycles in Kikuchi graph \implies even covers in H.*

Cycle:
$$S_1 \xrightarrow{C_1} S_2 \xrightarrow{C_2} S_3 \cdots \longrightarrow S_{\ell} \xrightarrow{C_{\ell}} S_1.$$

•
$$S_i \oplus S_{i+1} = C_i$$
.

• $C_1, \ldots, C_\ell \in H$.

Claim: Cycles in Kikuchi graph \implies even covers in H.*

Cycle:
$$S_1 \xrightarrow{C_1} S_2 \xrightarrow{C_2} S_3 \cdots \longrightarrow S_{\ell} \xrightarrow{C_{\ell}} S_1$$
.

•
$$S_i \oplus S_{i+1} = C_i$$
.
• $C_1, \dots, C_{\ell} \in H$.
 $S_1 \oplus S_2 = C_1$
 $S_2 \oplus S_3 = C_2$
 \vdots
 $S_{\ell} \oplus S_1 = C_{\ell}$

Cycle: $S_1 \xrightarrow{C_1} S_2 \xrightarrow{C_2} S_3 \cdots \longrightarrow S_{\ell} \xrightarrow{C_{\ell}} S_1 \Longrightarrow C_1 \oplus \cdots \oplus C_{\ell} = \emptyset$.

Cycle:
$$S_1 \xrightarrow{C_1} S_2 \xrightarrow{C_2} S_3 \cdots \longrightarrow S_{\ell} \xrightarrow{C_{\ell}} S_1 \Longrightarrow C_1 \oplus \cdots \oplus C_{\ell} = \emptyset$$
.

• **Trivial** cycles: each hyperedge appears even number of times.

Cycles in Kikuchi \leftrightarrow **even covers**

Cycle:
$$S_1 \xrightarrow{C_1} S_2 \xrightarrow{C_2} S_3 \cdots \longrightarrow S_{\ell} \xrightarrow{C_{\ell}} S_1 \Longrightarrow C_1 \oplus \cdots \oplus C_{\ell} = \emptyset$$
.

- **Trivial** cycles: each hyperedge appears even number of times.
- Non-trivial cycles: even covers!

Cycle:
$$S_1 \xrightarrow{C_1} S_2 \xrightarrow{C_2} S_3 \cdots \longrightarrow S_{\ell} \xrightarrow{C_{\ell}} S_1 \Longrightarrow C_1 \oplus \cdots \oplus C_{\ell} = \emptyset$$
.

- **Trivial** cycles: each hyperedge appears even number of times.
- Non-trivial cycles: even covers!

Proof: cleverly count these cycles!

Open questions

Tight bounds for Feige's conjecture?

• Remove the last log factor.

Open questions

Tight bounds for Feige's conjecture?

• Remove the last log factor.

We proved existence of even covers. What about other substructures?

• For e.g., dense sub-hypergraphs?

Open questions

Tight bounds for Feige's conjecture?

• Remove the last log factor.

We proved existence of even covers. What about other substructures?

• For e.g., dense sub-hypergraphs?

Thank you!