A simple and sharper proof of the hypergraph Moore bound

Jun-Ting (Tim) Hsieh Pravesh K. Kothari Sidhanth Mohanty
Carnegie Mellon Carnegie Mellon UC Berkeley

Carnegie Mellon Carnegie Mellon UC Berkeley

Girth: length of the shortest cycle.

Girth: length of the shortest cycle.

What's the maximum girth of a graph with *n* vertices and average degree *d*?

Girth: length of the shortest cycle.

What's the maximum girth of a graph with *n* vertices and average degree *d*?

• $d = 2$: girth *n* (cycle).

Girth: length of the shortest cycle.

What's the maximum girth of a graph with *n* vertices and average degree *d*?

- $d = 2$: girth *n* (cycle).
- What about $d = 2.1$?

For *d*-**regular** graphs, the girth $g \le 2 \log_{d-1} n + 2$.

For *d*-**regular** graphs, the girth $g \leq 2 \log_{d-1} n + 2$.

• The *g*/2 − 1 neighborhood must be a *d*-regular tree.

For *d*-**regular** graphs, the girth $g \leq 2 \log_{d-1} n + 2$.

- The *g*/2 − 1 neighborhood must be a *d*-regular tree.
	- Number of leaves is $\geq (d-1)^{g/2-1}$.

For *d*-**regular** graphs, the girth $g \leq 2 \log_{d-1} n + 2$.

- The *g*/2 − 1 neighborhood must be a *d*-regular tree.
	- Number of leaves is $\geq (d-1)^{g/2-1}$.
- There are *n* vertices.

For *d*-**regular** graphs, the girth $g \leq 2 \log_{d-1} n + 2$.

- The *g*/2 − 1 neighborhood must be a *d*-regular tree.
	- Number of leaves is $\geq (d-1)^{g/2-1}$.
- There are *n* vertices.

So $(d-1)^{g/2-1} \le n \implies g \le 2 \log_{d-1} n + 2$.

For *d*-**regular** graphs, the girth $g \leq 2 \log_{d-1} n + 2$.

- The *g*/2 − 1 neighborhood must be a *d*-regular tree.
	- Number of leaves is $\geq (d-1)^{g/2-1}$.
- There are *n* vertices.

 $\text{So } (d-1)^{g/2-1} \leq n \implies g \leq 2 \log_{d-1} n + 2.$

Bollabas [1978] asked: **irregular** graphs with **average** degree *d* ?

A *k*-uniform hypergraph is just a graph but each hyperedge has *k* vertices.

Cycles in hypergraphs

A *k*-uniform hypergraph is just a graph but each hyperedge has *k* vertices. A **cycle** in a hypergraph (a.k.a. **even cover**) is a set of hyperedges such that every vertex participates in an **even** number of them.

Cycles in hypergraphs

A *k*-uniform hypergraph is just a graph but each hyperedge has *k* vertices. A **cycle** in a hypergraph (a.k.a. **even cover**) is a set of hyperedges such that every vertex participates in an **even** number of them.

Cycles in hypergraphs

A *k*-uniform hypergraph is just a graph but each hyperedge has *k* vertices. A **cycle** in a hypergraph (a.k.a. **even cover**) is a set of hyperedges such that every vertex participates in an **even** number of them.

For graphs: Even cover \Leftrightarrow union of cycles

Another view:

Even cover \Leftrightarrow linearly dependent columns (mod 2).

Even cover \Leftrightarrow linearly dependent columns (mod 2).

Girth = size of a smallest linearly dependent subset of columns.

Even cover \Leftrightarrow linearly dependent columns (mod 2).

Even cover \Leftrightarrow linearly dependent columns (mod 2).

Easy: hypergraphs with *n* vertices and $m \geq n + 1$ hyperedges must have an even cover of size $\leq n+1$.

Even cover \Leftrightarrow linearly dependent columns (mod 2). **Easy**: hypergraphs with *n* vertices and $m \ge n + 1$ hyperedges must have an even cover of size $\leq n + 1$.

Even cover \Leftrightarrow linearly dependent columns (mod 2). **Easy**: hypergraphs with *n* vertices and $m \ge n + 1$ hyperedges must have an even cover of size $\leq n + 1$.

Even cover \Leftrightarrow linearly dependent columns (mod 2). **Easy**: hypergraphs with *n* vertices and $m \ge n + 1$ hyperedges must have an even cover of size $\leq n + 1$.

Feige's conjecture

Conjecture: For $1 \le r \le n$, every *k*-uniform hypergraph with *n* vertices and $m \gtrsim n \left(\frac{m}{r} \right)^{\frac{n}{2}-1}$ hyperedges has an even cover of size $O(r \log n)$. *n r*) $\frac{k}{2}$ ^{−1} hyperedges has an even cover of size $O(r \log n)$

Feige's conjecture

Conjecture: For $1 \le r \le n$, every *k*-uniform hypergraph with *n* vertices and $m \gtrsim n \left(\frac{m}{r} \right)^{\frac{n}{2}-1}$ hyperedges has an even cover of size $O(r \log n)$. *n r*) $\frac{k}{2}$ ^{−1} hyperedges has an even cover of size $O(r \log n)$

Guruswami, Kothari and Manohar [2022]

Theorem: every *k*-uniform H with n vertices, $m \geq n$ *n r*) *k* ²−1 log4*k*+1 *n*

Guruswami, Kothari and Manohar [2022]

Theorem: every *k*-uniform H with n vertices, $m \geq n$ *n r*) *k* ²−1 log4*k*+1 *n*

Guruswami, Kothari and Manohar [2022]

Theorem: every *k*-uniform H with n vertices, $m \geq n$ *n r*) *k* ²−1 log4*k*+1 *n*

Theorem: every *k*-uniform H with n vertices, $m \geq n$ *n r*) *k* ²−1 log *n*

Theorem: every *k*-uniform H with n vertices, $m \geq n$ *n r*) *k* ²−1 log *n*

hyperedges \Longrightarrow even cover of size $O(r\log n).$

• Significantly simpler proof.

Theorem: every *k*-uniform H with n vertices, $m \geq n$ *n r*) *k* ²−1 log *n*

hyperedges \Longrightarrow even cover of size $O(r\log n).$

• Significantly simpler proof.

Theorem: every *k*-uniform H with n vertices, $m \geq n$ *n r*) *k* ²−1 log *n*

- Significantly simpler proof.
- New proof for the classical Moore bound.

Theorem: every *k*-uniform H with n vertices, $m \geq n$ *n r*) *k* ²−1 log *n*

hyperedges \Longrightarrow even cover of size $O(r\log n).$

- Significantly simpler proof.
- New proof for the classical Moore bound. [GKM22] loses an extra

 $\log^3 n$ factor.

Theorem: every *k*-uniform H with n vertices, $m \geq n$ hyperedges \Longrightarrow even cover of size $O(r\log n).$ *n r*) *k* ²−1 log *n*

- Significantly simpler proof.
- New proof for the classical Moore bound.
- Last log: likely not real but difficult to remove.

Kikuchi graph

Introduced by [Wein-Alaoui-Moore'19]

Kikuchi graph

Definition. Given parameter *r*, the Kikuchi graph (associated to the hypergraph *H*) is a graph on vertex set $\binom{1}{r}$ and two vertices S, T are connected if $S \oplus T \in H$. [*n*] $\binom{n}{r}$ and two vertices S, T Symmetric difference $\overline{\mathcal{L}}$ [*n*] *^r*) [∋] *^S ^T* [∈] ([*n*] *r*) 1 iff $S \oplus T \in H$

Kikuchi graph with $r = 4$

Claim: Cycles in Kikuchi graph \Longrightarrow even covers in H^* .

Claim: Cycles in Kikuchi graph \implies even covers in H^* .

$$
\text{Cycle: } S_1 \xrightarrow{C_1} S_2 \xrightarrow{C_2} S_3 \cdots \longrightarrow S_\ell \xrightarrow{C_\ell} S_1.
$$

•
$$
S_i \oplus S_{i+1} = C_i
$$
.

• $C_1, ..., C_\ell \in H$.

Claim: Cycles in Kikuchi graph \Longrightarrow even covers in H^* .

$$
\text{Cycle: } S_1 \xrightarrow{C_1} S_2 \xrightarrow{C_2} S_3 \cdots \longrightarrow S_\ell \xrightarrow{C_\ell} S_1.
$$

•
$$
S_i \oplus S_{i+1} = C_i
$$
.

$$
\bullet \ \ C_1, \ldots, C_\ell \in H.
$$

$$
S_1 \oplus S_2 = C_1
$$

\n
$$
S_2 \oplus S_3 = C_2
$$

\n
$$
\vdots
$$

\n
$$
S_{\ell} \oplus S_1 = C_{\ell}
$$

$$
\emptyset = C_1 \oplus \cdots \oplus C_\ell
$$

Cycle: $S_1 \longrightarrow S_2 \longrightarrow S_3 \cdots \longrightarrow S_\ell \longrightarrow S_1 \Longrightarrow C_1 \oplus \cdots \oplus C_\ell = \emptyset.$ $C₁$ $S_2 \longrightarrow$ $C₂$ $S_3 \cdots \longrightarrow S_{\ell} \stackrel{\tau}{\longrightarrow}$ *Cℓ* $S_1 \Longrightarrow C_1 \oplus \cdots \oplus C_\ell = \emptyset$

$$
\text{Cycle: } S_1 \xrightarrow{C_1} S_2 \xrightarrow{C_2} S_3 \cdots \longrightarrow S_\ell \xrightarrow{C_\ell} S_1 \Longrightarrow C_1 \oplus \cdots \oplus C_\ell = \emptyset.
$$

• **Trivial** cycles: each hyperedge appears even number of times.

$$
\text{Cycle: } S_1 \xrightarrow{C_1} S_2 \xrightarrow{C_2} S_3 \cdots \longrightarrow S_\ell \xrightarrow{C_\ell} S_1 \Longrightarrow C_1 \oplus \cdots \oplus C_\ell = \emptyset.
$$

- **Trivial** cycles: each hyperedge appears even number of times.
- **Non-trivial** cycles: **even covers**!

$$
\text{Cycle: } S_1 \xrightarrow{C_1} S_2 \xrightarrow{C_2} S_3 \cdots \longrightarrow S_\ell \xrightarrow{C_\ell} S_1 \Longrightarrow C_1 \oplus \cdots \oplus C_\ell = \emptyset.
$$

- **Trivial** cycles: each hyperedge appears even number of times.
- **Non-trivial** cycles: **even covers**!

Proof: cleverly count these cycles!

Open questions

Tight bounds for Feige's conjecture?

• Remove the last log factor.

Open questions

Tight bounds for Feige's conjecture?

• Remove the last log factor.

We proved existence of even covers. What about other substructures?

• For e.g., dense sub-hypergraphs?

Open questions

Tight bounds for Feige's conjecture?

• Remove the last log factor.

We proved existence of even covers. What about other substructures?

• For e.g., dense sub-hypergraphs?

Thank you!