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Girth of a graph
Girth: length of the shortest cycle.

What's the maximum girth of a graph with n

vertices and average degree d?
« d =2:girth n (cycle).
« What about d = 2.17?
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Girth of a graph

For d-regular graphs, the girth ¢ < 2log, n + 2.
« The g/2 — 1 neighborhood must be a d-regular tree.

« Number of leaves is > (d — 1)%*~1.

e There are n vertices.
So(d—1)¥*l1<n = g< 2log,_n+2.

Bollabas [1978] asked: irregular graphs with average degree d ?
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Classical Moore bound

Alon, Hoory and Linial [2002] proved that g < 2log, ;7 + 2 holds for

irregular graphs with average degree d.
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Classical Moore bound

Alon, Hoory and Linial [2002] proved that g < 2log, ;n + 2 holds for

irregular graphs with average degree d.

2log, n+?2

What about “cycles” in hypergraphs?
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Cycles in hypergraphs

A k-uniform hypergraph is just a graph but each hyperedge has k vertices.

A cycle in a hypergraph (a.k.a. even cover) is a set of hyperedges such

that every vertex participates in an even number of them.

O

For graphs:
Even cover < union of cycles
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Even cover < linearly dependent columns (mod 2).

Girth = size of a smallest linearly dependent subset of columns.
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Even covers

Even cover < linearly dependent columns (mod 2).
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Maximum girth
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Hypergraph Moore bound

Maximum girth k-uniform hypergraphs on 7 vertices
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Feige’s conjecture

Conjecture: For 1 < r < n, every k-uniform hypergraph with n vertices
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Feige’s conjecture

Conjecture: For 1 < r < n, every k-uniform hypergraph with n vertices

n
and m > n(—
r

O(rlogn)

O(logn)

>§—1 hyperedges has an even cover of size O(r log n).
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Guruswami, Kothari and Manohar [2022]
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Guruswami, Kothari and Manohar [2022]
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Our results

n\
Theorem: every k-uniform H with n vertices, m = n (— > >~ logn
r

hyperedges = even cover of size O(rlog n).
* Significantly simpler proof.

* New proof for the classical Moore bound. [GKM22] loses an extra

log? n factor.
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Our results

Theorem: every k-uniform H with n vertices, m > n(

hyperedges = even cover of size O(rlog n).
* Significantly simpler proof.
* New proof for the classical Moore bound.

* Last log: likely not real but difficult to remove.
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Kikuchi graph

Introduced by [Wein-Alaoui-Moore 19]



Kikuchi graph

Definition. Given parameter 7, the Kikuchi graph (associated to the

[n]

hypergraph H) is a graph on vertex set < > and two vertices §, T are

r

connected if S 7' € H. e <[n]>
| r

Symmetric difference ([n])
=) l1iffS@TeH

r

22



Kikuchi graph
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4-uniform hypergraph H

Kikuchi graph with r =4
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+ Cp,....,C, €H.
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Cycles in Kikuchi < even covers

Claim: Cycles in Kikuchi graph = even covers in H.*

C
Cycle: §; — S, — S;-- — S, — S,

.+ 58S, =C.
51 @ 5, = C

e Cy,....C, e H.
oo Cp € S, @S, =C
S, @S, =C

®:C1@®Cf



Cycles in Kikuchi < even covers

C, G, C,
CYCle: Sl — S2 — S3“' — Sf — Sl —> Cl @ @ Cf — @
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Cycles in Kikuchi < even covers

C, C, C,
CYCle: Sl — S2 — S3“' — Sf — Sl —> Cl @ cee @ CLﬂ = @

* Trivial cycles: each hyperedge appears even number of times.
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Cycles in Kikuchi < even covers

Cl C2 Cf
CYCle: Sl — S2 — S3“' — Sf — Sl —> Cl @ @ Cf — @
* Trivial cycles: each hyperedge appears even number of times.

* Non-trivial cycles: even covers!
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Cycles in Kikuchi < even covers

Cl C2 CL’
CYCle: Sl _)Sz_)S3"' _)Sf_)Slﬁcl@"’@szg.
* Trivial cycles: each hyperedge appears even number of times.

* Non-trivial cycles: even covers!

Proof: cleverly count these cycles!
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Open questions

Tight bounds for Feige’s conjecture?

* Remove the last log factor.
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Open questions

Tight bounds for Feige’s conjecture?
* Remove the last log factor.
We proved existence of even covers. What about other substructures?

* For e.g., dense sub-hypergraphs?

Thank you!
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