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• What about ?d = 2.1
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• The  neighborhood must be a -regular tree.g/2 − 1 d

• Number of leaves is .≥ (d − 1)g/2−1

• There are  vertices.n

So .(d − 1)g/2−1 ≤ n ⟹ g ≤ 2 logd−1 n + 2

Bollabas [1978] asked: irregular graphs with average degree  ?d
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What about “cycles” in hypergraphs?



Hypergraphs

A -uniform hypergraph is just a graph but each hyperedge has  vertices.k k
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For graphs: 
Even cover  union of cycles⇔
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hyperedges

vertices

Even cover  linearly dependent columns (mod 2).⇔
Girth = size of a smallest linearly dependent subset of columns. 
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Even covers

Even cover  linearly dependent columns (mod 2).
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Feige’s conjecture

Conjecture: For , every -uniform hypergraph with  vertices 

and  hyperedges has an even cover of size .

1 ≤ r ≤ n k n

m ≳ n( n
r ) k

2 −1 O(r log n)
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Guruswami, Kothari and Manohar [2022]
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Our results

Theorem: every -uniform  with  vertices,  

hyperedges  even cover of size .

• Significantly simpler proof.

• New proof for the classical Moore bound.

• Last log: likely not real but difficult to remove.
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Kikuchi graph

Introduced by [Wein-Alaoui-Moore’19]



Kikuchi graph

Definition. Given parameter , the Kikuchi graph (associated to the 

hypergraph ) is a graph on vertex set  and two vertices  are 

connected if .

r

H ([n]
r ) S, T

S ⊕ T ∈ H

22

Symmetric difference ([n]
r ) ∋ S

T ∈ ([n]
r )

1 iff S ⊕ T ∈ H



Kikuchi graph
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4-uniform hypergraph H
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S1 ⊕ S2 = C1

S2 ⊕ S3 = C2

⋮
Sℓ ⊕ S1 = Cℓ

Ø = C1 ⊕ ⋯ ⊕ Cℓ
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Proof: cleverly count these cycles!
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Thank you!


