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. Given m random points v;, ..., v, € R? drawn from drawn from N(0,—1d,))

d

+ Is there a matrix A € R such that
. v Av; = 1forallv,and A > 0 (Positive-semidefinite) ?

« [SCPW Conjecture] For all € > 0, and for sufficiently large d,
d2

. (Positive) If m < (1 — G)T , there exists such an ellipsoid w.h.p. Sharp transition!

d2

. (Negative) If m > (1 + E)T, there does not exist such an ellipsoid w.h.p.



Ellipsoid Fitting Conjecture
(Negative side via dimension-argument)




Ellipsoid Fitting Conjecture
(Negative side via dimension-argument)

. m equations v Av, = 1 for symmetric A € R




Ellipsoid Fitting Conjecture
(Negative side via dimension-argument)

. m equations v Av, = 1 for symmetric A € R

. . | dd+1)
. View each as a linear constraint on ——— entries of A

2




Ellipsoid Fitting Conjecture

(Negative side via dimension-argument)

. m equations v Av, = 1 for symmetric A € R

| | | dd+1)
. View each as a linear constraint on T entries of A
dld+ 1) |
. When randomly chosen, as long as m > T , more constraints

than the degree of freedom



Ellipsoid Fitting Conjecture

(Negative side via dimension-argument)

. m equations v Av, = 1 for symmetric A € R

. . . dd+1)
. View each as a linear constraint on T entries of A
dld+ 1) |
. When randomly chosen, as long as m > T , more constraints

than the degree of freedom

—> w.h.p., the linear system cannot be satisfied.



Ellipsoid Fitting Conjecture

(Negative side via dimension-argument)

. m equations v Av, = 1 for symmetric A € R

. . . dd+1)
. View each as a linear constraint on T entries of A
dld+ 1) |
. When randomly chosen, as long as m > T , more constraints

than the degree of freedom
—> w.h.p., the linear system cannot be satisfied.

 Open Question: Can we improve upon this bound? PSDness?
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Ellipsoid Fitting Conjecture

(Positive side)

« [Saunderson, Parrilo, Willsky *13] m = O(d®>~¢) for any constant c>0

* Recently, motivated from studies in Sum-of-Squares Algorithms

. [Ghosh, Jeronimo, Jones, Potechin, Rajendran ’20] m = O(d”?)
d2

Implicitly extends to m1 = O
e (pOZylag(d))

* Obtained also by [Potechin, Turner, Venkat, Wein '22] and [Kane, Diakonikolas ’22]
d2

Best-known bound m = O( )

' log*(d)

Is the polylog dependence tight?
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Our result

. Given m random points v, ...,V € R< drawn from drawn from N(0,—1d))

d

+ For m < cd” for some absolute constant c>0, there is a symmetric matrix
A € R™4 sych that

. v Av; = 1 forall v,

« A > 0.

e Constant-factor away from the conjecture
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Candidate Construction

Graph Matrices

> W Db

Tight Norm Bounds for Graph Matrices
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d

» Observation: setting A = Id,; “almost” works
« A =1d, > 0 (immediate);
e Foralli € [m], vl-TAvl- ~ 1

* The quadratic-form constraints are “approximately" satisfied

log d
~Whp., [v/Ay;— 1] < 5¢

V/a
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Construction of ellipsoid via two-steps

. Given m random points v, ..., v, € RY drawn from drawn from N(0,—Id,)

d

» Starting from Id ;, and correct all the deviations of the quadratic form

m
_ Our correction term has a nice form Z w_ v v: for somew € R™

a=1

Final matrix A = Id; — ) w,v,v) How do we pick w?
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Finding the correction coefficient w
AN=1d,+ Z W vl
o Lety, = HviH% — ] be the deviation of quadratic-form constraint a€lm]

. Consider a matrix M € R™" s.t. M[i,j] = (v, vj)2

- T T 2
For any i, vi Av, = v Id,v; — Z wj<vi, vj)
JEIm]
I-th row of M

= [[v;ll3 — (MIi], w)

2 2
— HViHQ o (HVZ‘HQ o 1) If we pick w s.t. Mw =

"
= ] (Exactly satisfying the constraint)
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Remaining questions

Construction from
[KD ’22]

m
Pickingw € R" s.t. Mw =#, and set A = Id,; — Z WV,
a=1

1. Why is the vector w well-defined?

2. Why does A =1d, — Z w.y.v, satlsfy the PSDness constraint?

a=1

Both boil down to studying spectral norm of
random matrices with polynomial entries

—)
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Why norm bounds?

(Vector w is well-defined)
« Wanttofindw € R" s.t. Mw =y

« Sufficient to show M is full-rank, and take w = M_ln

e |dea: decompose M = A + B such that

* As a perturbed identity matrix,

Our focus: showing A = Id + E for

« B = UCYVisarank-2 component 1E| < 1

 Woodbury Expansion:
A+UCVY ' =A"1+ A" lucc '+ va-lu)y=lva-!
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Why norm bounds?
Showing PSDness of A

« For the given w obtained by solving Mw = 1, we need to show

AN=1d,+ Z wv v >0

ac|[m]

* Implies PSDness by a triangle inequality. _

Warning: w has complicated dependences on {v;}
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Random Matrix with Polynomial Entries: Graph Matrix

e (General set-up:
» Assume there is some underlying input, eg. v;,...,v,~ N(0,/d))
» A matrix M: each entry is a polynomial of inputs in {v;}
* A baby example:
e M€ R™: M[i,a] = v:la] is a linear function of {v,}
 Backbone for the recent progress in average-case Sum-of-Squares Lower Bounds

e eg. Planted Clique, Sparse Independent Set, Densest-k-Subgraph...
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Zooming into A, € R""

CAlla,bl = ) vl vlil - v Ll -l

i7j€ld]
 Each entry is a degree-4 polynomial of v;

e Correlations across entries

» We only have md-bits of randomness from {v;}

e This is a matrix of m2 >> md entries. Correlation is inevitable!

Most results from RMT do not apply!
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* Previous bounds are lossy in polylog(d, m) factors
e Our main technical work

* For the matrices that arise in our analysis, we give norm bounds that
are tight up to an absolute constant

* Therefore, we are able to improve previous bounds

d2
2
. O(POZylag(d)) # m < cd
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Norm Bound Strategy

 High-level strategy from previous works

. Trace-moment method: for any matrix M, and any g € N, E[HMH?;]] < E[Tr(MM")1]
where the expectation is taken over the underlying random input

 Higher-moments to get a w.h.p. bound

» Applying for A;:

ELlIA, 12 < E[4,ATY] = E Y AL[S,, TIATIT,, S,1-+-AT(T, ), 8)]
Sl? T1> S29 T29 . 'Sq—19 Tq_le[m[

where the expectation is taken over input{ v, }



Overview

1. Ellipsoid Fitting Conjecture
2. Constructing an Ellipsoid
3. Analysis via Graph Matrices

4. A Local Machinery for Tight Norm Bounds
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* Crucial idea for trace-moment method:
 each edge is independent -> the expectation factorizes over edges;

* each edge corresponds to a mean-0 r.v. -> it needs to appear at least
twice in the walk (o0.w. the expectation vanishes).

» Sufficient to get a rough norm bound (that loses polylog factors)
* We give a more fine-grained analysis to control the lower-order factors

 This is a walk of 2g-steps, we bound the “contribution” from each step

 Warning: each step may contain multiple edges
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 Each edge (random variable)’s appearance in the walk may be,
* F (forward): uses a new edge, and arrive at a new vertex
e S (surprise): uses a new edge, and arrive at a “seen” vertex
 H (middle): uses an edge that is making middle appearance (neither first/last)
* R (return): uses an edge for the last time
 Each edge gives two types of contributions
* Vertex-factor (of the vertex it leads to): the combinatorial choice from counting

 Edge-factor: the analytical factor from expectation of the random variable
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* Assignment of edge-factor: for each random variable X,

|
Assign a factor of for first (F) and last (R) appearance each;

Va

1
. if appears exactly twice, gives value E[x?] = —

tt/2

412 ’

. If appears t > 2 times, gives a value at most E[x'] <

{ q
Assign a factor of \/_ < \/_ for each middle (non first/last) appearance.

Vd  /d
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* Assignment of vertex-factor
 Each vertex, when it first appears, contributes a value of d (or m)

* We split the factor among its first and last appearance

e That is a factor of \/c_l (or\/m)

* (Main lemma) For any vertex’s subsequent appearance,

If it is arrived via an H/S-edge, a cost of q3 suffices ;

If it is arrived via an R-edge, a cost of 1 suffices.

Similar lemmas were known before for G.O.E. and adjacency matrix only
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 Assume the walk is tree-like (no S edge), and there is also no H edge
 Each time we are at a vertex, it is incident to only 1 F edge
* Hence, we do not need any cost to specify where an R edge leads to.

e When the walk is not tree-like

 Each S/H edge may incur confusion as a vertex may now be incident to multiple F
edges

* Observation: each comes with a in the vertex-factor, and we can use this gap
to encode auxiliary information

« (Gap: as opposed to going to a new vertex that gives \/;l , a label in g suffices now
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* Assignment of vertex-factor
 Each vertex, when it first appears, contributes a value of d (or m)

* We split the factor among its first and last appearance

e That is a factor of \/c_l (or\/m)

* (Main lemma) For any vertex’s subsequent appearance,

If it is arrived via an H/S-edge, a cost of q3 suffices ;

If it is arrived via an R-edge, a cost of 1 suffices.

 Each vertex on the vertex boundary appears in both steps
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F/S/R: 1/\/d

H:

« Norm bounds in 2-steps
 Bound the local-value of each edge-labeling

* And then sum over all F/R/S/H-edge-labeling
of a given shape

. Summing over 4*-edge labelings gives a bound

of O(1/c) for A"

 Exponentially many more matrices that come up
—> develop a systematic analysis

First/Last: \/;l (or \/Z)
Va\/d  Arrival via S/H:

b




Wrapping up

1. Ellipsoid Fitting Conjecture
2. Constructing an Ellipsoid
3. Analysis via Graph Matrices

4. A Local Machinery for Tight Norm Bounds



Thank you!

Open Question [SCPW Conjecture] For all ¢ > 0, and for sufficiently large
d,

d2
. (Positive) If m < (1 — €)— , there exists such an ellipsoid w.h.p.

A

* Our construction experimentally fails [PTVW ’22]
d2

. (Negative) If m > (1 + €)—, there does not exist such an ellipsoid

4
w.h.p.
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