Ellipsoid Fitting Up to a Constant

Jeff Xu Carnegie Mellon University

Joint Work with Tim Hsieh (CMU), Pravesh Kothari (CMU), and Aaron Potechin (UChicago)

Overview

1. Ellipsoid Fitting Conjecture

- 2. Constructing an Ellipsoid
- 3. Analysis via Graph Matrices
- 4. A Local Machinery for Tight Norm Bounds

• Given m random points $v_1, \ldots, v_m \in \mathbf{R}^d$ drawn from $\mathbf{N}(0, \frac{1}{d}Id_d)$

• Given m random points $v_1, \ldots, v_m \in \mathbf{R}^d$ drawn from $\mathbf{N}(0, \frac{1}{d}Id_d)$

Normalized to be roughly unit norm

- Is there a symmetric matrix $\Lambda \in R^{d \times d}$ such that lacksquare
 - $v_i^T \Lambda v_i = 1$ for all v_i
 - $\Lambda \geq 0$ (Positive-semidefinite) ?

• Given m random points $v_1, \ldots, v_m \in \mathbf{R}^d$ drawn from $\mathbf{N}(0, \frac{1}{d}Id_d)$

Normalized to be roughly unit norm

- Given m random points $v_1, \ldots, v_m \in \mathbf{R}^d$ drawn from $\mathbf{N}(0, \frac{1}{d}Id_d)$
- Is there a symmetric matrix $\Lambda \in R^{d \times d}$ such that

•
$$v_i^T \Lambda v_i = 1$$
 for all v_i

- $\Lambda \geq 0$ (Positive-semidefinite) ?
- Geometrically, $\Lambda \in R^{d \times d}$ is an **ellipsoid** centered at origin that **passes** through all m points on boundary.

Normalized to be roughly unit norm

- Is there a matrix $\Lambda \in R^{d \times d}$ such that
 - $v_i^T \Lambda v_i = 1$ for all v_i , and $\Lambda \ge 0$ (Positive-semidefinite)?

```
• Given m random points v_1, \ldots, v_m \in \mathbf{R}^d drawn from drawn from \mathbf{N}(0, \frac{1}{\mathcal{A}}Id_d)
```

- Is there a matrix $\Lambda \in R^{d \times d}$ such that
 - $v_i^T \Lambda v_i = 1$ for all v_i , and $\Lambda \geq 0$ (Positive-semidefinite)?
- **[SCPW Conjecture]** For all $\epsilon > 0$, and for sufficiently large d,

```
• Given m random points v_1, \ldots, v_m \in \mathbf{R}^d drawn from drawn from \mathbf{N}(0, \frac{1}{\mathcal{A}}Id_d)
```

- Is there a matrix $\Lambda \in R^{d \times d}$ such that
 - $v_i^T \Lambda v_i = 1$ for all v_i , and $\Lambda \ge 0$ (Positive-semidefinite)?
- **[SCPW Conjecture]** For all $\epsilon > 0$, and for sufficiently large d,

• (Positive) If
$$m \leq (1 - \epsilon) \frac{d^2}{4}$$
 , ther

```
• Given m random points v_1, \ldots, v_m \in \mathbf{R}^d drawn from drawn from \mathbf{N}(0, \frac{1}{J}Id_d)
```

re exists such an ellipsoid w.h.p.

- Is there a matrix $\Lambda \in R^{d \times d}$ such that
 - $v_i^T \Lambda v_i = 1$ for all v_i , and $\Lambda \geq 0$ (Positive-semidefinite)?
- **[SCPW Conjecture]** For all $\epsilon > 0$, and for sufficiently large d,
 - (Positive) If $m \le (1 \epsilon) \frac{d^2}{4}$, there exists such an ellipsoid w.h.p.

• (Negative) If $m \ge (1 + \epsilon)\frac{\pi}{4}$, there does not exist such an ellipsoid w.h.p.

```
• Given m random points v_1, \ldots, v_m \in \mathbf{R}^d drawn from drawn from \mathbf{N}(0, \frac{1}{J}Id_d)
```

- Is there a matrix $\Lambda \in R^{d \times d}$ such that
 - $v_i^T \Lambda v_i = 1$ for all v_i , and $\Lambda \geq 0$ (Positive-semidefinite)?
- **[SCPW Conjecture]** For all $\epsilon > 0$, and for sufficiently large d,
 - (Positive) If $m \le (1 \epsilon) \frac{d^2}{\Delta}$, there exists such an ellipsoid w.h.p.

• (Negative) If $m \ge (1 + \epsilon)\frac{\pi}{4}$, there does not exist such an ellipsoid w.h.p.

• Given m random points $v_1, \ldots, v_m \in \mathbf{R}^d$ drawn from drawn from $\mathbf{N}(0, \frac{1}{J}Id_d)$

Sharp transition!

Conjecture:

Impossible when $m \ge (1 + \epsilon) \frac{d^2}{4}$

• **m** equations $v_i^T \Lambda v_i = 1$ for symmetric $\Lambda \in \mathbb{R}^{d \times d}$

Conjecture:

Impossible when $m \ge (1 + \epsilon) \frac{d^2}{4}$

- **m** equations $v_i^T \Lambda v_i = 1$ for symmetry
 - View each as a linear constrain

Conjecture: Impossible when $m \ge (1 + \epsilon) \frac{d^2}{4}$

etric
$$\Lambda \in R^{d \times d}$$

of on $\frac{d(d+1)}{2}$ entries of Λ

- **m** equations $v_i^T \Lambda v_i = 1$ for symmetry
 - View each as a linear constrain
 - When randomly chosen, as lon than the degree of freedom

Conjecture: Impossible when $m \ge (1 + \epsilon) \frac{d^2}{4}$

tric
$$\Lambda \in R^{d \times d}$$

It on $\frac{d(d+1)}{2}$ entries of Λ
In a s $m > \frac{d(d+1)}{2}$, more constraints

- **m** equations $v_i^T \Lambda v_i = 1$ for symmetric
 - View each as a linear constrain
 - When randomly chosen, as lon than the degree of freedom -> w.h.p., the linear sys

Conjecture: Impossible when $m \ge (1 + \epsilon) \frac{d^2}{4}$

tric
$$\Lambda \in R^{d \times d}$$

It on $\frac{d(d+1)}{2}$ entries of Λ
og as $m > \frac{d(d+1)}{2}$, more constraints

-> w.h.p., the linear system cannot be satisfied.

- **m** equations $v_i^T \Lambda v_i = 1$ for symmetry
 - . View each as a linear constrain
 - When randomly chosen, as lon than the degree of freedom

• **Open Question**: Can we improve upon this bound? PSDness?

Conjecture: Impossible when $m \ge (1 + \epsilon) \frac{d^2}{4}$

tric
$$\Lambda \in R^{d \times d}$$

It on $\frac{d(d+1)}{2}$ entries of Λ
og as $m > \frac{d(d+1)}{2}$, more constraints

-> w.h.p., the linear system cannot be satisfied.

Conjecture:

Possible when $m \le (1 + \epsilon) \frac{d^2}{4}$

• [Saunderson, Parrilo, Willsky '13] $m = O(d^{2})$

Conjecture:

Possible when $m \le (1 + \epsilon) \frac{d^2}{4}$

$$\frac{6}{5-c}$$
) for any constant c>0

- [Saunderson, Parrilo, Willsky '13] $m = O(d^{6/5-c})$ for any constant c>0
- Recently, motivated from studies in Sum-of-Squares Algorithms

Conjecture: Possible when $m \le (1 + \epsilon) \frac{d^2}{4}$

- [Saunderson, Parrilo, Willsky '13] $m = O(d^{6/5-c})$ for any constant c>0
- Recently, motivated from studies in Sum-of-Squares Algorithms
 - [Ghosh, Jeronimo, Jones, Potechin, Rajendran '20] $m = \tilde{O}(d^{3/2})$

- [Saunderson, Parrilo, Willsky '13] $m = O(d^{6/5-c})$ for any constant c>0
- Recently, motivated from studies in Sum-of-Squares Algorithms
 - [Ghosh, Jeronimo, Jones, Potechin, Rajendran '20] $m = \tilde{O}(d^{3/2})$
 - Implicitly extends to $m = O(\frac{d^2}{polylog(d)})$

- [Saunderson, Parrilo, Willsky '13] $m = O(d^{6/5-c})$ for any constant c>0
- Recently, motivated from studies in Sum-of-Squares Algorithms
 - [Ghosh, Jeronimo, Jones, Potechin, Rajendran '20] $m = \tilde{O}(d^{3/2})$
 - Implicitly extends to $m = O(\frac{d^2}{polvlog(d)})$

• Obtained also by [Potechin, Turner, Venkat, Wein '22] and [Kane, Diakonikolas '22]

- [Saunderson, Parrilo, Willsky '13] $m = O(d^{6/5-c})$ for any constant c>0
- Recently, motivated from studies in Sum-of-Squares Algorithms
 - [Ghosh, Jeronimo, Jones, Potechin, Rajendran '20] $m = \tilde{O}(d^{3/2})$
 - Implicitly extends to $m = O(\frac{d^2}{nolvlog(d)})$

Best-known bound $m = O(\frac{d^2}{log^4(d)})$

• Obtained also by [Potechin, Turner, Venkat, Wein '22] and [Kane, Diakonikolas '22]

- [Saunderson, Parrilo, Willsky '13] $m = O(d^{6/5-c})$ for any constant c>0
- Recently, motivated from studies in Sum-of-Squares Algorithms
 - [Ghosh, Jeronimo, Jones, Potechin, Rajendran '20] $m = \tilde{O}(d^{3/2})$
 - Implicitly extends to $m = O(\frac{d^2}{nolvlog(d)})$

Best-known bound $m = O(\frac{d^2}{log^4(d)})$

• Obtained also by [Potechin, Turner, Venkat, Wein '22] and [Kane, Diakonikolas '22]

- [Saunderson, Parrilo, Willsky '13] $m = O(d^{6/5-c})$ for any constant c>0
- Recently, motivated from studies in Sum-of-Squares Algorithms
 - [Ghosh, Jeronimo, Jones, Potechin, Rajendran '20] $m = \tilde{O}(d^{3/2})$
 - Implicitly extends to $m = O(\frac{d^2}{nolvlog(d)})$

Best-known bound $m = O(\frac{d^2}{d(1-d(1-1))})$ l0g4(

• Obtained also by [Potechin, Turner, Venkat, Wein '22] and [Kane, Diakonikolas '22]

Is the polylog dependence tight?

• Given m random points $v_1, \ldots, v_m \in \mathbf{R}^d$ drawn from drawn from $\mathbf{N}(0, \frac{1}{d}Id_d)$

- For $m \leq cd^2$ for some absolute constant c>0, there is a symmetric matrix $\Lambda \in R^{d \times d}$ such that

• Given m random points $v_1, \ldots, v_m \in \mathbf{R}^d$ drawn from drawn from $\mathbf{N}(0, \frac{1}{d}Id_d)$

- For $m \leq cd^2$ for some absolute constant c>0, there is a symmetric matrix $\Lambda \in R^{d \times d}$ such that

•
$$v_i^T \Lambda v_i = 1$$
 for all v_i ,

• Given m random points $v_1, \ldots, v_m \in \mathbf{R}^d$ drawn from drawn from $\mathbf{N}(0, \frac{1}{d}Id_d)$

- For $m \leq cd^2$ for some absolute constant c>0, there is a symmetric matrix $\Lambda \in R^{d \times d}$ such that
 - $v_i^T \Lambda v_i = 1$ for all v_i ,
 - $\Lambda \geq 0$.

• Given m random points $v_1, \ldots, v_m \in \mathbf{R}^d$ drawn from drawn from $\mathbf{N}(0, \frac{1}{\mathcal{A}}Id_d)$

- For $m \leq cd^2$ for some absolute constant c>0, there is a symmetric matrix $\Lambda \in R^{d \times d}$ such that
 - $v_i^T \Lambda v_i = 1$ for all v_i ,
 - $\Lambda \geq 0$.
- Constant-factor away from the conjecture

• Given m random points $v_1, \ldots, v_m \in \mathbf{R}^d$ drawn from drawn from $\mathbf{N}(0, \frac{1}{\mathcal{A}}Id_d)$

• High-level idea

- High-level idea
 - Construct a matrix $\Lambda \in R^{d \times d}$ explicitly from v_1, \ldots, v_m

- High-level idea
 - Construct a matrix $\Lambda \in R^{d \times d}$ explicitly from v_1, \ldots, v_m
 - Show $\Lambda \in R^{d \times d}$ satisfies both constraints

- High-level idea
 - Construct a matrix $\Lambda \in R^{d \times d}$ explicitly from v_1, \ldots, v_m
 - Show $\Lambda \in R^{d \times d}$ satisfies both constraints
 - (Quadratic-form) $v_i^T \Lambda v_i = 1$ for all v_i ,
Proof Overview

- High-level idea
 - Construct a matrix $\Lambda \in R^{d \times d}$ explicitly from v_1, \ldots, v_m
 - Show $\Lambda \in R^{d \times d}$ satisfies both constraints
 - (Quadratic-form) $v_i^T \Lambda v_i = 1$ for all v_i ,
 - (PSDness) $\Lambda \geq 0$.

Proof Overview

- High-level idea
 - Construct a matrix $\Lambda \in R^{d \times d}$ explicitly from v_1, \ldots, v_m
 - Show $\Lambda \in R^{d \times d}$ satisfies both constraints
 - (Quadratic-form) $v_i^T \Lambda v_i = 1$ for all v_i ,
 - (PSDness) $\Lambda \geq 0$.

Overview

- 1. Ellipsoid Fitting Conjecture
- 2. Candidate Construction
- 3. Graph Matrices
- 4. Tight Norm Bounds for Graph Matrices

• Given m random points $v_1, \ldots, v_m \in \mathbf{R}^d$ drawn from drawn from $\mathbf{N}(0, \frac{1}{d}Id_d)$

- Given m random points $v_1, \ldots, v_m \in \mathbf{R}^d$ drawn from drawn from $\mathbf{N}(0, \frac{1}{d}Id_d)$
- Observation: setting $\Lambda = Id_d$ "almost" works

- Given m random points $v_1, \ldots, v_m \in \mathbf{R}^d$ drawn from drawn from $\mathbf{N}(0, \frac{1}{d}Id_d)$
- Observation: setting $\Lambda = Id_d$ "almost" works
 - $\Lambda = Id_d \geq 0$ (immediate);

- Given m random points $v_1, \ldots, v_m \in \mathbf{R}^d$ drawn from drawn from $\mathbf{N}(0, \frac{1}{d}Id_d)$
- Observation: setting $\Lambda = Id_d$ "almost" works
 - $\Lambda = Id_d \geq 0$ (immediate);
 - For all $i \in [m]$, $v_i^T \Lambda v_i \approx 1$

- Given m random points $v_1, \ldots, v_m \in \mathbf{R}^d$ drawn from drawn from $\mathbf{N}(0, \frac{1}{d}Id_d)$
- Observation: setting $\Lambda = Id_d$ "almost" works
 - $\Lambda = Id_d \geq 0$ (immediate);
 - For all $i \in [m]$, $v_i^T \Lambda v_i \approx 1$
 - The quadratic-form constraints are "approximately" satisfied

- Given m random points $v_1, \ldots, v_m \in \mathbf{R}^d$ drawn from drawn from $\mathbf{N}(0, \frac{1}{d}Id_d)$
- Observation: setting $\Lambda = Id_d$ "almost" works
 - $\Lambda = Id_d \geq 0$ (immediate);
 - For all $i \in [m]$, $v_i^T \Lambda v_i \approx 1$
 - The quadratic-form constraints are "approximately" satisfied

- gd
- d

- Starting from Id_d , and correct all the deviations of the quadratic form

• Given m random points $v_1, \ldots, v_m \in \mathbf{R}^d$ drawn from drawn from $\mathbf{N}(0, \frac{1}{d}Id_d)$

- Given m random points $v_1, \ldots, v_m \in \mathbf{R}^d$ drawn from drawn from $\mathbf{N}(0, \frac{1}{d}Id_d)$
- Starting from Id_d , and correct all the deviations of the quadratic form
 - Our correction term has a nice

form
$$\sum_{a=1}^{m} w_a v_a v_a^T$$
 for some $w \in \mathbf{R}^m$

- Given m random points $v_1, \ldots, v_m \in \mathbf{R}^d$ drawn from drawn from $\mathbf{N}(0, \frac{1}{d}Id_d)$
- Starting from Id_d , and correct all the deviations of the quadratic form
 - Our correction term has a nice

• Final matrix $\Lambda = Id_d - \sum_{a \in [m]} w_a v_a v_a^T$

form
$$\sum_{a=1}^{m} w_a v_a v_a^T$$
 for some $w \in \mathbf{R}^m$

- Given m random points $v_1, \ldots, v_m \in \mathbf{R}^d$ drawn from drawn from $\mathbf{N}(0, \frac{1}{d}Id_d)$
- Starting from Id_d , and correct all the deviations of the quadratic form
 - Our correction term has a nice

• Final matrix $\Lambda = Id_d - \sum_{a \in [m]} w_a v_a v_a^T$

form
$$\sum_{a=1}^{m} w_a v_a v_a^T$$
 for some $w \in \mathbf{R}^m$

- Starting from Id_d , and correct all the deviations of the quadratic form
 - Our correction term has a nice

• Final matrix $\Lambda = Id_d - \sum w_d$ $a \in [m]$

• Given m random points $v_1, \ldots, v_m \in \mathbf{R}^d$ drawn from drawn from $\mathbf{N}(0, \frac{1}{\mathcal{A}}Id_d)$

form
$$\sum_{a=1}^{m} w_a v_a v_a^T$$
 for some $w \in \mathbb{R}^m$
 $a v_a v_a^T$ How do we pick w?

- Consider a matrix $M \in \mathbb{R}^{m \times m}$ s.t. $M[i,j] = \langle v_i, v_j \rangle^2$

- Consider a matrix $M \in \mathbb{R}^{m \times m}$ s.t. $M[i,j] = \langle v_i, v_j \rangle^2$

For any i,
$$v_i^T \Lambda v_i = v_i^T I d_a$$

 $V_d v_i - \sum w_j \langle v_i, v_j \rangle^2$ $j \in [m]$

- Consider a matrix $M \in \mathbb{R}^{m \times m}$ s.t. $M[i,j] = \langle v_i, v_j \rangle^2$

For any i,
$$v_i^T \Lambda v_i = v_i^T I d_a$$

 $= \|v_i\|_2^2 - \langle M[i], w \rangle$

 $V_d v_i - \sum w_j \langle v_i, v_j \rangle^2$ $j \in [m]$

- Let $\eta_i := \|v_i\|_2^2 1$ be the deviation of quadratic-form constraint
- Con

isider a matrix
$$M \in \mathbf{R}^{m \times m}$$
 s.t. $M[i, j] = \langle v_i, v_j \rangle^2$
For any i, $v_i^T \Lambda v_i = v_i^T I d_d v_i - \sum_{j \in [m]} w_j \langle v_i, v_j \rangle^2$
 $= \|v_i\|_2^2 - \langle M[i], w \rangle$ i-th row of M

- Let $\eta_i := \|v_i\|_2^2 1$ be the deviation of quadratic-form constraint
- Con

Asider a matrix
$$M \in \mathbf{R}^{m \times m}$$
 s.t. $M[i, j] = \langle v_i, v_j \rangle^2$
For any i, $v_i^T \Lambda v_i = v_i^T I d_d v_i - \sum_{j \in [m]} w_j \langle v_i, v_j \rangle^2$
 $= \|v_i\|_2^2 - \langle M[i], w \rangle$
i-th row of M

If we pick w s.t. $Mw = \eta$

- Let $\eta_i := \|v_i\|_2^2 1$ be the deviation of quadratic-form constraint
- Con

Asider a matrix
$$M \in \mathbf{R}^{m \times m}$$
 s.t. $M[i, j] = \langle v_i, v_j \rangle^2$
For any i, $v_i^T \Lambda v_i = v_i^T I d_d v_i - \sum_{j \in [m]} w_j \langle v_i, v_j \rangle^2$
 $= ||v_i||_2^2 - \langle M[i], w \rangle$
 $= ||v_i||_2^2 - (||v_i||_2^2 - 1)$ If we pick w s.t. $Mw = \eta$

 η_i

- Let $\eta_i := \|v_i\|_2^2 1$ be the deviation of quadratic-form constraint
- Con

Asider a matrix
$$M \in \mathbf{R}^{m \times m}$$
 s.t. $M[i, j] = \langle v_i, v_j \rangle^2$
For any i, $v_i^T \Lambda v_i = v_i^T I d_d v_i - \sum_{j \in [m]} w_j \langle v_i, v_j \rangle^2$
 $= \|v_i\|_2^2 - \langle M[i], w \rangle$ i-th row of M
 $= \|v_i\|_2^2 - (\|v_i\|_2^2 - 1)$ If we pick w s.t. $Mw = \eta$

 η_i = 1 (**Exactly** satisfying the constraint)

Picking $w \in \mathbf{R}^m$ s.t. $Mw = \eta$, and set $\Lambda = Id_d - \sum w_a v_a v_a^T$

Picking $w \in \mathbf{R}^m$ s.t. $Mw = \eta$, and set $\Lambda = Id_d - \sum w_a v_a v_a^T$

Construction from [KD '22]

$\operatorname{set} \Lambda = Id_d - \sum_{a=1}^m w_a v_a v_a^T$

Picking $w \in \mathbf{R}^m$ s.t. $Mw = \eta$, and set $\Lambda = Id_d - \sum w_a v_a v_a^T$

1. Why is the vector w well-defined?

Construction from [KD '22]

Picking $w \in \mathbf{R}^m$ s.t. $Mw = \eta$, and set $\Lambda = Id_d - \sum w_a v_a v_a^T$

1. Why is the vector w well-defined?

2. Why does $\Lambda = Id_d - \sum w_a v_a v_a^T$ satisfy the PSDness constraint?

Picking $w \in \mathbf{R}^m$ s.t. $Mw = \eta$, and set $\Lambda = Id_d - \sum w_a v_a v_a^T$

1. Why is the vector w well-defined?

2. Why does
$$\Lambda = Id_d - \sum_{a=1}^{n} d^{a}$$

$\sum_{a=1}^{m} w_a v_a v_a^T$ satisfy the PSDness constraint?

Picking $w \in \mathbf{R}^m$ s.t. $Mw = \eta$, and set $\Lambda = Id_d - \sum w_a v_a v_a^T$

1. Why is the vector w well-defined?

2. Why does
$$\Lambda = Id_d - \sum_{a=1}^m w_a v_a v_a^T$$
 satisfy the PSDness constraint?

Both boil down to studying spectral norm of random matrices with polynomial entries

• Want to find $w \in \mathbf{R}^m$ s.t. $Mw = \eta$

- Want to find $w \in \mathbf{R}^m$ s.t. $Mw = \eta$
- Sufficient to show M is full-rank, and take $w = M^{-1}\eta$

- Want to find $w \in \mathbf{R}^m$ s.t. $Mw = \eta$
- Sufficient to show M is full-rank, and take $w = M^{-1}\eta$
- Idea: decompose M = A + B such that

- Want to find $w \in \mathbf{R}^m$ s.t. $Mw = \eta$
- Sufficient to show M is full-rank, and take $w = M^{-1}\eta$
- Idea: decompose M = A + B such that
 - A is a perturbed identity matrix,

- Want to find $w \in \mathbf{R}^m$ s.t. $Mw = \eta$
- Sufficient to show M is full-rank, and take $w = M^{-1}\eta$
- Idea: decompose M = A + B such that
 - A is a perturbed identity matrix,
 - B = UCV is a rank-2 component

- Want to find $w \in \mathbf{R}^m$ s.t. $Mw = \eta$
- Sufficient to show M is full-rank, and take $w = M^{-1}\eta$
- Idea: decompose M = A + B such that
 - A is a perturbed identity matrix,
 - B = UCV is a rank-2 component
- Woodbury Expansion: $(A + UCV)^{-1} = A^{-1} + A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$

Why norm bounds? (Vector w is well-defined)

- Want to find $w \in \mathbf{R}^m$ s.t. $Mw = \eta$
- Sufficient to show M is full-rank, and take $w = M^{-1}\eta$
- Idea: decompose M = A + B such that
 - A is a perturbed identity matrix,
 - B = UCV is a rank-2 component
- Woodbury Expansion: $(A + UCV)^{-1} = A^{-1} + A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$

 $M \in \mathbf{R}^{m \times m} : M[i, j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := \|v_i\|_2^2 - 1$

Our focus: showing A = Id + E for ||E|| < 1

Neumann Series: $(Id - T)^{-1} = \sum T^k$ provided $||T||_{sp} < 1$

 $M \in \mathbf{R}^{m \times m} : M[i, j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := \|v_i\|_2^2 - 1$

k≥0

Neumann Series: $(Id - T)^{-1} = \sum T^k$ provided $||T||_{sp} < 1$

 $M \in \mathbf{R}^{m \times m} : M[i, j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := \|v_i\|_2^2 - 1$

$\sum_{k \ge 0} T^k \text{ provided } \|T\|_{sp} < 1$ $\|T\|_{sp} := \max_{v: \|v\|_2 = 1} \|Tv\|_2^2$

Neumann Series: $(Id - T)^{-1} = \sum_{k \ge 0} T^k$ provided $||T||_{sp} < 1$

• $A \approx Id + A_1 + A_2$ (ignoring components with o(1) norm)

Neumann Series: $(Id - T)^{-1} = \sum T^k$ provided $||T||_{sp} < 1$

• $A \approx Id + A_1 + A_2$ (ignoring components with o(1) norm) $A_1[a,b] = \sum v_a[i] \cdot v_b[i]$ $i \neq j \in [d]$

$$\cdot v_a[j] \cdot v_b[j]$$

Neumann Series: $(Id - T)^{-1} = \sum T^k$ provided $||T||_{sp} < 1$

• $A \approx Id + A_1 + A_2$ (ignoring components with o(1) norm) $A_1[a,b] = \sum v_a[i] \cdot v_b[i]$ $i \neq j \in [d]$

 $A_2[a,b] = \sum (v_a[i]^2 - \frac{1}{J})($ $i \in [d]$

$$\cdot v_a[j] \cdot v_b[j]$$

$$(v_b[i]^2 - \frac{1}{d})$$

Neumann Series: $(Id - T)^{-1} = \sum T^k$ provided $||T||_{SD} < 1$

• $A \approx Id + A_1 + A_2$ (ignoring components with o(1) norm) $A_1[a,b] = \sum v_a[i] \cdot v_b[i]$ $i \neq j \in [d]$

 $A_2[a,b] = \sum (v_a[i]^2 - \frac{1}{3})$ $i \in [d]$

 $M \in \mathbf{R}^{m \times m} : M[i, j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := \|v_i\|_2^2 - 1$

$$\cdot v_a[j] \cdot v_b[j]$$

Bounding spectral norm of random matrices!

$$(v_b[i]^2 - \frac{1}{d})$$

• For the given w obtained by solving $Mw = \eta$, we need to show

• For the given w obtained by solving $Mw = \eta$, we need to show

$$\Lambda = Id_d + \sum_{a \in [m]} w_a v_a v_a^T \ge 0$$

• For the given w obtained by solving $Mw = \eta$, we need to show

$$\Lambda = Id_d + \sum_{a \in [m]} w_a v_a v_a^T \ge 0$$

Main Theorem: for $m \le cd^2$, $\|\sum w_a v_a v_a^T\|_{sp} < 1$ $a \in [m]$

• For the given w obtained by solving $Mw = \eta$, we need to show

$$\Lambda = Id_d + \sum_{a \in [m]} w_a v_a v_a^T \ge 0$$

Main Theorem: for $m \le cd^2$, $\|\sum w_a v_a v_a^T\|_{sp} < 1$ $a \in [m]$

• For the given w obtained by solving $Mw = \eta$, we need to show

$$\Lambda = Id_d + \sum_{a \in [m]} w_a v_a v_a^T \ge 0$$

Main Theorem: for $m \le cd^2$, $\|\sum w_a v_a v_a^T\|_{sp} < 1$ $a \in [m]$

• For the given w obtained by solving $Mw = \eta$, we need to show

$$\Lambda = Id_d + \sum_{a \in [m]} w_a v_a v_a^T \ge 0$$

Implies PSDness by a triangle inequality. \bullet

Main Theorem: for $m \le cd^2$, $\| \sum w_a v_a v_a^T \|_{sp} < 1$ $a \in [m]$

• For the given w obtained by solving $Mw = \eta$, we need to show

$$\Lambda = Id_d + \sum_{a \in [m]} w_a v_a v_a^T \ge 0$$

Implies PSDness by a triangle inequality. \bullet

Main Theorem: for $m \le cd^2$, $\| \sum w_a v_a v_a^T \|_{sp} < 1$ $a \in [m]$

• For the given w obtained by solving $Mw = \eta$, we need to show

$$\Lambda = Id_d + \sum_{a \in [m]} w_a v_a v_a^T \ge 0$$

Main Theorem: for $m \leq cd$

Implies PSDness by a triangle inequality.

 $M \in \mathbf{R}^{m \times m} : M[i, j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := \|v_i\|_2^2 - 1$

$$\| \sum_{a \in [m]} w_a v_a v_a^T \|_{sp} < 1$$

Again, bounding spectral norm of random matrices!

• For the given w obtained by solving $Mw = \eta$, we need to show

$$\Lambda = Id_d + \sum_{a \in [m]} w_a v_a v_a^T \ge 0$$

Main Theorem: for $m \leq cd$

Implies PSDness by a triangle inequality. \bullet

Warning: w has complicated dependences on $\{v_i\}$

 $M \in \mathbf{R}^{m \times m} : M[i, j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := \|v_i\|_2^2 - 1$

$$\| \sum_{a \in [m]} w_a v_a v_a^T \|_{sp} < 1$$

Again, bounding spectral norm of random matrices!

Overview

- 1. Ellipsoid Fitting Conjecture
- 2. Constructing an Ellipsoid
- **3. Analysis via Graph Matrices**
- 4. A Local Machinery for Tight Norm Bounds

• General set-up:

- General set-up:

• Assume there is some underlying input, eg. $v_1, \ldots, v_m \sim \mathbf{N}(0, Id_d)$

- General set-up:

 - A matrix **M**: each entry is a polynomial of inputs in $\{v_i\}$

• Assume there is some underlying input, eg. $v_1, \ldots, v_m \sim N(0, Id_d)$

- General set-up:

 - A matrix **M**: each entry is a polynomial of inputs in $\{v_i\}$
- A baby example:

• Assume there is some underlying input, eg. $v_1, \ldots, v_m \sim N(0, Id_d)$

- General set-up:

 - A matrix **M**: each entry is a polynomial of inputs in $\{v_i\}$
- A baby example:
 - $M \in \mathbb{R}^{m \times d}$: $M[i, a] = v_i[a]$ is a linear function of $\{v_i\}$

• Assume there is some underlying input, eg. $v_1, \ldots, v_m \sim N(0, Id_d)$

- General set-up:

 - A matrix **M**: each entry is a polynomial of inputs in $\{v_i\}$
- A baby example:
 - $M \in \mathbb{R}^{m \times d}$: $M[i, a] = v_i[a]$ is a linear function of $\{v_i\}$

• Assume there is some underlying input, eg. $v_1, \ldots, v_m \sim N(0, Id_d)$

Backbone for the recent progress in average-case Sum-of-Squares Lower Bounds

- General set-up:

 - A matrix **M**: each entry is a polynomial of inputs in $\{v_i\}$
- A baby example:
 - $M \in \mathbb{R}^{m \times d}$: $M[i, a] = v_i[a]$ is a linear function of $\{v_i\}$

• Assume there is some underlying input, eg. $v_1, \ldots, v_m \sim N(0, Id_d)$

Backbone for the recent progress in average-case Sum-of-Squares Lower Bounds

• eg. Planted Clique, Sparse Independent Set, Densest-k-Subgraph...

 $M \in \mathbf{R}^{m \times m} : M[i, j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := \|v_i\|_2^2 - 1$

• Each entry is a degree-4 polynomial of v_i

 $M \in \mathbf{R}^{m \times m} : M[i, j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := \|v_i\|_2^2 - 1$

- Each entry is a degree-4 polynomial of v_i
- Represented by a "graph"

 $M \in \mathbf{R}^{m \times m} : M[i, j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := \|v_i\|_2^2 - 1$

- Each entry is a degree-4 polynomial of v_i
- Represented by a "graph"

 $M \in \mathbf{R}^{m \times m} : M[i, j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := \|v_i\|_2^2 - 1$

• Each entry is a degree-4 polynomial of v_i

Represented by a "graph"

 $M \in \mathbf{R}^{m \times m} : M[i, j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := \|v_i\|_2^2 - 1$

• Each entry is a degree-4 polynomial of v_i

Represented by a "graph"

 $M \in \mathbf{R}^{m \times m} : M[i, j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := \|v_i\|_2^2 - 1$

• Each entry is a degree-4 polynomial of v_i

Represented by a "graph"

 $M \in \mathbf{R}^{m \times m} : M[i, j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := \|v_i\|_2^2 - 1$

• Each entry is a degree-4 polynomial of v_i

- Each entry is a degree-4 polynomial of v_i
- Correlations across entries

Zooming into $A_1 \in \mathbb{R}^{m \times m}$ $A_1[a,b] = \sum v_a[i] \cdot v_b[i] \cdot v_a[j] \cdot v_b[j]$ $i \neq j \in [d]$

- Each entry is a degree-4 polynomial of v_i
- Correlations across entries
 - We only have md-bits of randomness from $\{v_i\}$

 $M \in \mathbf{R}^{m \times m} : M[i, j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := \|v_i\|_2^2 - 1$

Zooming into $A_1 \in \mathbb{R}^{m \times m}$ $A_1[a,b] = \sum v_a[i] \cdot v_b[i] \cdot v_a[j] \cdot v_b[j]$ $i \neq j \in [d]$

- Each entry is a degree-4 polynomial of v_i
- Correlations across entries
 - We only have md-bits of randomness from $\{v_i\}$

 $M \in \mathbf{R}^{m \times m} : M[i, j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := \|v_i\|_2^2 - 1$

• This is a matrix of $m^2 \gg md$ entries. Correlation is inevitable!

Zooming into $A_1 \in \mathbb{R}^{m \times m}$ $A_1[a,b] = \sum v_a[i] \cdot v_b[i] \cdot v_a[j] \cdot v_b[j]$ $i \neq j \in [d]$

- Each entry is a degree-4 polynomial of v_i
- Correlations across entries
 - We only have md-bits of randomness from $\{v_i\}$
 - This is a matrix of $m^2 \gg md$ entries. Correlation is inevitable! **Most results from RMT do not apply!**

 $M \in \mathbf{R}^{m \times m} : M[i, j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := \|v_i\|_2^2 - 1$

• Previous bounds are lossy in polylog(d, m) factors

- Previous bounds are lossy in polylog(d, m) factors
- Our main technical work

- Previous bounds are lossy in polylog(d, m) factors
- Our main technical work
 - are tight up to an absolute constant

- Previous bounds are lossy in polylog(d, m) factors
- Our main technical work
 - are tight up to an absolute constant
 - Therefore, we are able to improve previous bounds

- Previous bounds are lossy in polylog(d, m) factors
- Our main technical work
 - are tight up to an absolute constant
 - Therefore, we are able to improve previous bounds

$$m = O(\frac{d^2}{polylog(d)})$$

- Previous bounds are lossy in polylog(d, m) factors
- Our main technical work
 - are tight up to an absolute constant
 - Therefore, we are able to improve previous bounds

$$m = O(\frac{d^2}{polylog(d)})$$

- Previous bounds are lossy in polylog(d, m) factors
- Our main technical work
 - are tight up to an absolute constant
 - Therefore, we are able to improve previous bounds

$$m = O(\frac{d^2}{polylog(d)})$$

High-level strategy from previous works

- High-level strategy from previous works
- where the expectation is taken over the underlying random input

• Trace-moment method: for any matrix M, and any $q \in \mathbb{N}$, $\mathbb{E}[\|M\|_{sp}^{2q}] \leq \mathbb{E}[Tr(MM^T)^q]$

- High-level strategy from previous works
- where the expectation is taken over the underlying random input
- Higher-moments to get a w.h.p. bound

• Trace-moment method: for any matrix M, and any $q \in \mathbb{N}$, $\mathbb{E}[||M||_{sp}^{2q}] \leq \mathbb{E}[Tr(MM^T)^q]$

- High-level strategy from previous works
- where the expectation is taken over the underlying random input
- Higher-moments to get a w.h.p. bound
- Applying for A_1 :

• Trace-moment method: for any matrix M, and any $q \in \mathbb{N}$, $\mathbb{E}[\|M\|_{sp}^{2q}] \leq \mathbb{E}[Tr(MM^T)^q]$

- High-level strategy from previous works
- where the expectation is taken over the underlying random input
- Higher-moments to get a w.h.p. bound
- Applying for A_1 :

 $\mathbf{E}[\|A_1\|_{sp}^{2q}] \le \mathbf{E}[(A_1A_1^T)^q] = \mathbf{E} \left| \sum_{S_1, T_1, S_2, T_2, \dots, S_{q-1}, T_{q-1} \in [m]} A_1[S_1, T_1]A_1^T[T_1, S_2] \cdots A_1^T[T_{q-1}, S_1] \right|$

• Trace-moment method: for any matrix M, and any $q \in \mathbb{N}$, $\mathbb{E}[\|M\|_{sp}^{2q}] \leq \mathbb{E}[Tr(MM^T)^q]$

- High-level strategy from previous works
- where the expectation is taken over the underlying random input
- Higher-moments to get a w.h.p. bound
- Applying for A_1 :

$$\mathbf{E}[\|A_1\|_{sp}^{2q}] \le \mathbf{E}[(A_1A_1^T)^q] = \mathbf{E}\begin{bmatrix} S_1, T_1, S_2, T_2, T_2 \end{bmatrix}$$

where the expectation is taken over input $\{v_i\}$

• Trace-moment method: for any matrix M, and any $q \in \mathbb{N}$, $\mathbb{E}[\|M\|_{sp}^{2q}] \leq \mathbb{E}[Tr(MM^T)^q]$

$\sum_{\dots S_{q-1}, T_{q-1} \in [m[} A_1[S_1, T_1]A_1^T[T_1, S_2] \cdots A_1^T[T_{q-1}, S_1]$

Overview

- 1. Ellipsoid Fitting Conjecture
- 2. Constructing an Ellipsoid
- 3. Analysis via Graph Matrices
- 4. A Local Machinery for Tight Norm Bounds

• Crucial idea for trace-moment method:

- Crucial idea for trace-moment method:

each edge is independent -> the expectation factorizes over edges;

- Crucial idea for trace-moment method:
 - each edge is independent -> the expectation factorizes over edges;
 - each edge corresponds to a mean-0 r.v. -> it needs to appear at least twice in the walk (o.w. the expectation vanishes).

- Crucial idea for trace-moment method:
 - each edge is independent -> the expectation factorizes over edges;
 - each edge corresponds to a mean-0 r.v. -> it needs to appear at least twice in the walk (o.w. the expectation vanishes).
- Sufficient to get a rough norm bound (that loses polylog factors)

- Crucial idea for trace-moment method:
 - each edge is independent -> the expectation factorizes over edges;
 - each edge corresponds to a mean-0 r.v. -> it needs to appear at least twice in the walk (o.w. the expectation vanishes).
- Sufficient to get a rough norm bound (that loses polylog factors)
- We give a more fine-grained analysis to control the lower-order factors

- Crucial idea for trace-moment method:
 - each edge is independent -> the expectation factorizes over edges;
 - each edge corresponds to a mean-0 r.v. -> it needs to appear at least twice in the walk (o.w. the expectation vanishes).
- Sufficient to get a rough norm bound (that loses polylog factors)
- We give a more fine-grained analysis to control the lower-order factors
 - This is a walk of 2q-steps, we bound the "contribution" from each step

- Crucial idea for trace-moment method:
 - each edge is independent -> the expectation factorizes over edges;
 - each edge corresponds to a mean-0 r.v. -> it needs to appear at least twice in the walk (o.w. the expectation vanishes).
- Sufficient to get a rough norm bound (that loses polylog factors)
- We give a more fine-grained analysis to control the lower-order factors
 - This is a walk of 2q-steps, we bound the "contribution" from each step
 - Warning: each step may contain multiple edges

• Each edge (random variable)'s appearance in the walk may be,

- Each edge (random variable)'s appearance in the walk may be,
 - F (forward): uses a new edge, and arrive at a new vertex

- Each edge (random variable)'s appearance in the walk may be,
 - F (forward): uses a new edge, and arrive at a new vertex
 - S (surprise): uses a new edge, and arrive at a "seen" vertex

- Each edge (random variable)'s appearance in the walk may be,
 - F (forward): uses a new edge, and arrive at a new vertex
 - S (surprise): uses a new edge, and arrive at a "seen" vertex
 - H (middle): uses an edge that is making middle appearance (neither first/last)

- Each edge (random variable)'s appearance in the walk may be,
 - F (forward): uses a new edge, and arrive at a new vertex
 - S (surprise): uses a new edge, and arrive at a "seen" vertex
 - H (middle): uses an edge that is making middle appearance (neither first/last)
 - R (return): uses an edge for the last time

- Each edge (random variable)'s appearance in the walk may be,
 - F (forward): uses a new edge, and arrive at a new vertex
 - S (surprise): uses a new edge, and arrive at a "seen" vertex
 - H (middle): uses an edge that is making middle appearance (neither first/last)
 - **R** (return): uses an edge for the last time
- Each edge gives two types of contributions

- Each edge (random variable)'s appearance in the walk may be, •
 - **F** (forward): uses a new edge, and arrive at a new vertex
 - S (surprise): uses a new edge, and arrive at a "seen" vertex
 - H (middle): uses an edge that is making middle appearance (neither first/last)
 - **R** (return): uses an edge for the last time
- Each edge gives two types of contributions
 - Vertex-factor (of the vertex it leads to): the combinatorial choice from counting

- Each edge (random variable)'s appearance in the walk may be, •
 - **F** (forward): uses a new edge, and arrive at a new vertex
 - S (surprise): uses a new edge, and arrive at a "seen" vertex
 - H (middle): uses an edge that is making middle appearance (neither first/last)
 - **R** (return): uses an edge for the last time
- Each edge gives two types of contributions
 - Vertex-factor (of the vertex it leads to): the combinatorial choice from counting
 - Edge-factor: the analytical factor from expectation of the random variable
Assignment of edge-factor: for each random variable x,

Assignment of edge-factor: for each random variable x,

• Assign a factor of $\frac{1}{\sqrt{d}}$ for first (F) and last (R) appearance each;

Assignment of edge-factor: for each random variable x,

• Assign a factor of $\frac{1}{\sqrt{d}}$ for first (F) and last (R) appearance each;

• if appears exactly twice, gives v

value
$$\mathbf{E}[x^2] = \frac{1}{d};$$

Assignment of edge-factor: for each random variable x,

• Assign a factor of $\frac{1}{\sqrt{d}}$ for first (F) and last (R) appearance each;

- if appears exactly twice, gives v
- If appears t > 2 times, gives a

value
$$\mathbf{E}[x^2] = \frac{1}{d};$$

value at most
$$\mathbf{E}[x^t] \leq \frac{t^{t/2}}{d^{t/2}};$$

Assignment of edge-factor: for each random variable x,

• Assign a factor of $\frac{1}{\sqrt{d}}$ for first (F) and last (R) appearance each;

- if appears exactly twice, gives v
- If appears t > 2 times, gives a

• Assign a factor of
$$\frac{\sqrt{t}}{\sqrt{d}} \leq \frac{\sqrt{q}}{\sqrt{d}}$$
 for

value
$$\mathbf{E}[x^2] = \frac{1}{d};$$

value at most
$$\mathbf{E}[x^t] \leq \frac{t^{t/2}}{d^{t/2}};$$

each middle (non first/last) appearance.

• Assignment of vertex-factor

- Assignment of vertex-factor
 - Each vertex, when it first appears, contributes a value of d (or m)

- Assignment of vertex-factor
 - Each vertex, when it first appears, contributes a value of d (or m)
 - We split the factor among its first and last appearance

- Assignment of vertex-factor
 - Each vertex, when it first appears, contributes a value of d (or m)
 - We split the factor among its first and last appearance
 - That is a factor of \sqrt{d} (or \sqrt{m})

- Assignment of vertex-factor
 - Each vertex, when it first appears, contributes a value of d (or m)
 - We split the factor among its first and last appearance
 - That is a factor of \sqrt{d} (or \sqrt{m})
 - (Main lemma) For any vertex's subsequent appearance,

- Assignment of vertex-factor
 - Each vertex, when it first appears, contributes a value of d (or m)
 - We split the factor among its first and last appearance
 - That is a factor of \sqrt{d} (or \sqrt{m})
 - (Main lemma) For any vertex's subsequent appearance,

- If it is arrived via an H/S-edge, a cost of q^3 suffices;
- If it is arrived via an R-edge, a cost of 1 suffices.

- Assignment of vertex-factor
 - Each vertex, when it first appears, contributes a value of d (or m)
 - We split the factor among its first and last appearance
 - That is a factor of \sqrt{d} (or \sqrt{m})
 - (Main lemma) For any vertex's subsequent appearance,

- If it is arrived via an H/S-edge, a cost of q^3 suffices;
- If it is arrived via an R-edge, a cost of 1 suffices.

- Assignment of vertex-factor
 - Each vertex, when it first appears, contributes a value of d (or m)
 - We split the factor among its first and last appearance
 - That is a factor of \sqrt{d} (or \sqrt{m})
 - (Main lemma) For any vertex's subsequent appearance,

Similar lemmas were known before for G.O.E. and adjacency matrix only

- If it is arrived via an H/S-edge, a cost of q^3 suffices;
- If it is arrived via an R-edge, a cost of 1 suffices.

• Assume the walk is tree-like (no S edge), and there is also no H edge

- Assume the walk is tree-like (no S edge), and there is also no H edge
 - Each time we are at a vertex, it is incident to only **1** F edge

- Assume the walk is tree-like (no S edge), and there is also no H edge
 - Each time we are at a vertex, it is incident to only 1 F edge
 - Hence, we do not need any cost to specify where an R edge leads to.

- Assume the walk is tree-like (no S edge), and there is also no H edge
 - Each time we are at a vertex, it is incident to only 1 F edge
 - Hence, we do not need any cost to specify where an R edge leads to.
- When the walk is not tree-like

- Assume the walk is tree-like (no S edge), and there is also no H edge
 - Each time we are at a vertex, it is incident to only 1 F edge
 - Hence, we do not need any cost to specify where an R edge leads to.
- When the walk is not tree-like
 - Each S/H edge may incur confusio edges

• Each S/H edge may incur confusion as a vertex may now be incident to multiple F

- Assume the walk is tree-like (no S edge), and there is also no H edge
 - Each time we are at a vertex, it is incident to only 1 F edge
 - Hence, we do not need any cost to specify where an R edge leads to.
- When the walk is not tree-like
 - Each S/H edge may incur confusion as a vertex may now be incident to multiple F edges
 - Observation: each comes with a gap in the vertex-factor, and we can use this gap to encode auxiliary information

- Assume the walk is tree-like (no S edge), and there is also no H edge
 - Each time we are at a vertex, it is incident to only 1 F edge
 - Hence, we do not need any cost to specify where an R edge leads to.
- When the walk is not tree-like
 - Each S/H edge may incur confusion as a vertex may now be incident to multiple F edges
 - Observation: each comes with a gap in the vertex-factor, and we can use this gap to encode auxiliary information
 - Gap: as opposed to going to a new vertex that gives \sqrt{d} , a label in q suffices now

- Assignment of vertex-factor
 - Each vertex, when it first appears, contributes a value of d (or m)
 - We split the factor among its first and last appearance
 - That is a factor of \sqrt{d} (or \sqrt{m})
 - (Main lemma) For any vertex's subsequent appearance,

- If it is arrived via an H/S-edge, a cost of q^3 suffices;
- If it is arrived via an R-edge, a cost of 1 suffices.

- Assignment of vertex-factor
 - Each vertex, when it first appears, contributes a value of d (or m)
 - We split the factor among its first and last appearance
 - That is a factor of \sqrt{d} (or \sqrt{m})
 - (Main lemma) For any vertex's subsequent appearance,

Each vertex on the vertex boundary appears in both steps

- If it is arrived via an H/S-edge, a cost of q^3 suffices;
- If it is arrived via an R-edge, a cost of 1 suffices.

Edge-factors

F/S/R: $1/\sqrt{d}$

H:

a can be making "last" appearance, but not "first", hence \sqrt{m}

Edge-factors

F/S/R: $1/\sqrt{d}$

H:

- a can be making "last" appearance, but not "first", hence \sqrt{m}
- i is making "middle" appearance, hence no factor ullet

Edge-factors

F/S/R: $1/\sqrt{d}$

H:

- a can be making "last" appearance, but not "first", hence \sqrt{m}
- i is making "middle" appearance, hence no factor ullet
- j is making "middle" appearance, hence no factor ullet

Edge-factors

F/S/R: $1/\sqrt{d}$

H:

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a can be making "last" appearance, but not "first", hence \sqrt{m}
- i is making "middle" appearance, hence no factor ullet
- j is making "middle" appearance, hence no factor

Edge-factors

F/S/R: $1/\sqrt{d}$

H:

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

Why middle?

- a can be making "last" appearance, but not "first", hence \sqrt{m}
- i is making "middle" appearance, hence no factor
- j is making "middle" appearance, hence no factor

Edge-factors

F/S/R: $1/\sqrt{d}$

H:

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

Why middle?

- a can be making "last" appearance, but not "first", hence \sqrt{m}
- i is making "middle" appearance, hence no factor
- j is making "middle" appearance, hence no factor
- b is making "first" appearance, but not "last", hence \sqrt{m}

Edge-factors

F/S/R: $1/\sqrt{d}$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

Why middle?

- a can be making "last" appearance, but not "first", hence \sqrt{m}
- i is making "middle" appearance, hence no factor
- j is making "middle" appearance, hence no factor
- b is making "first" appearance, but not "last", hence \sqrt{m}
- Edge-value $1/d^2$

Edge-factors

F/S/R: $1/\sqrt{d}$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

Why middle?

- a can be making "last" appearance, but not "first", hence \sqrt{m}
- i is making "middle" appearance, hence no factor
- j is making "middle" appearance, hence no factor
- b is making "first" appearance, but not "last", hence \sqrt{m}
- Edge-value $1/d^2$

Edge-factors

F/S/R: $1/\sqrt{d}$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

Why middle?

- a can be making "last" appearance, but not "first", hence \sqrt{m}
- i is making "middle" appearance, hence no factor
- j is making "middle" appearance, hence no factor
- b is making "first" appearance, but not "last", hence \sqrt{m}
- Edge-value $1/d^2$

Edge-factors

F/S/R: $1/\sqrt{d}$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

Arrival via S/H: q^3

Edge-factors

a is making "middle" appearance, hence no factor

Edge-factors

F/S/R: $1/\sqrt{d}$

H:

- a is making "middle" appearance, hence no factor
- i is making "first" appearance, but not "last", hence \sqrt{d}

Edge-factors

F/S/R: $1/\sqrt{d}$

H:

- a is making "middle" appearance, hence no factor
- i is making "first" appearance, but not "last", hence \sqrt{d}
- j is making "first" appearance, but not "last", hence \sqrt{d}

Edge-factors

F/S/R: $1/\sqrt{d}$

H:

Vertex-factors

- a is making "middle" appearance, hence no factor
- i is making "first" appearance, but not "last", hence \sqrt{d}
- j is making "first" appearance, but not "last", hence \sqrt{d}
- b is making "first" appearance, but not "last", hence \sqrt{m}

Edge-factors

F/S/R: $1/\sqrt{d}$

Vertex-factors

- a is making "middle" appearance, hence no factor
- i is making "first" appearance, but not "last", hence \sqrt{d}
- j is making "first" appearance, but not "last", hence \sqrt{d}
- b is making "first" appearance, but not "last", hence \sqrt{m}
- Edge-value $1/d^2$

Edge-factors

F/S/R: $1/\sqrt{d}$

Vertex-factors

- a is making "middle" appearance, hence no factor
- i is making "first" appearance, but not "last", hence \sqrt{d}
- j is making "first" appearance, but not "last", hence \sqrt{d}
- b is making "first" appearance, but not "last", hence \sqrt{m}
- Edge-value $1/d^2$

Edge-factors

F/S/R: $1/\sqrt{d}$

Vertex-factors

- a is making "middle" appearance, hence no factor
- i is making "first" appearance, but not "last", hence \sqrt{d}
- j is making "first" appearance, but not "last", hence \sqrt{d}
- b is making "first" appearance, but not "last", hence \sqrt{m}
- Edge-value $1/d^2$

Edge-factors

F/S/R: $1/\sqrt{d}$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a is making "middle" appearance, hence no factor
- i is making "first" appearance, but not "last", hence \sqrt{d}
- j is making "first" appearance, but not "last", hence \sqrt{d}
- b is making "first" appearance, but not "last", hence \sqrt{m}
- Edge-value $1/d^2$

Edge-factors

F/S/R: $1/\sqrt{d}$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

Arrival via S/H: q^3

 $\sqrt{md/d^2} \le \sqrt{c}$

Dominant term!

Edge-factors

a is making "middle" appearance, hence no factor

Edge-factors

F/S/R: $1/\sqrt{d}$

H:

- a is making "middle" appearance, hence no factor
- i is making "last" appearance, but not "first", hence \sqrt{d}

Edge-factors

F/S/R: $1/\sqrt{d}$

H:

- a is making "middle" appearance, hence no factor
- i is making "last" appearance, but not "first", hence \sqrt{d}
- j is making "last" appearance, but not "first", hence \sqrt{d}

Edge-factors

F/S/R: $1/\sqrt{d}$

H:

- a is making "middle" appearance, hence no factor
- i is making "last" appearance, but not "first", hence \sqrt{d}
- j is making "last" appearance, but not "first", hence \sqrt{d}
- b is making "last" appearance, but not "first", hence \sqrt{m}

Edge-factors

F/S/R: $1/\sqrt{d}$

- a is making "middle" appearance, hence no factor
- i is making "last" appearance, but not "first", hence \sqrt{d}
- j is making "last" appearance, but not "first", hence \sqrt{d}
- b is making "last" appearance, but not "first", hence \sqrt{m}
- Edge-value $1/d^2$

Edge-factors

F/S/R: $1/\sqrt{d}$

- a is making "middle" appearance, hence no factor
- i is making "last" appearance, but not "first", hence \sqrt{d}
- j is making "last" appearance, but not "first", hence \sqrt{d}
- b is making "last" appearance, but not "first", hence \sqrt{m}
- Edge-value $1/d^2$

Edge-factors

F/S/R: $1/\sqrt{d}$

- a is making "middle" appearance, hence no factor
- i is making "last" appearance, but not "first", hence \sqrt{d}
- j is making "last" appearance, but not "first", hence \sqrt{d}
- b is making "last" appearance, but not "first", hence \sqrt{m}
- Edge-value $1/d^2$

Edge-factors

F/S/R: $1/\sqrt{d}$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a is making "middle" appearance, hence no factor
- i is making "last" appearance, but not "first", hence \sqrt{d}
- j is making "last" appearance, but not "first", hence \sqrt{d}
- b is making "last" appearance, but not "first", hence \sqrt{m}
- Edge-value $1/d^2$

Edge-factors

F/S/R: $1/\sqrt{d}$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

Arrival via S/H: q^3

 $\sqrt{md/d^2} \le \sqrt{c}$

Dominant term!

Edge-factors

a is making "middle" appearance, hence no factor

Edge-factors

F/S/R: $1/\sqrt{d}$

H:

- a is making "middle" appearance, hence no factor
- i is not "first" nor "last", yet it is arrived using S, hence q^3

Edge-factors

F/S/R: $1/\sqrt{d}$

H:

- a is making "middle" appearance, hence no factor
- i is not "first" nor "last", yet it is arrived using S, hence q^3
- j is making "middle" appearance, hence \sqrt{d}

Edge-factors

F/S/R: $1/\sqrt{d}$

H:

Vertex-factors

- a is making "middle" appearance, hence no factor
- i is not "first" nor "last", yet it is arrived using S, hence q^3
- j is making "middle" appearance, hence \sqrt{d}
- b is making "first" appearance, but not "last", hence \sqrt{m}

Edge-factors

- a is making "middle" appearance, hence no factor
- i is not "first" nor "last", yet it is arrived using S, hence q^3
- j is making "middle" appearance, hence \sqrt{d}
- b is making "first" appearance, but not "last", hence \sqrt{m}
- Edge-value $1/d^2$

Edge-factors

- a is making "middle" appearance, hence no factor
- i is not "first" nor "last", yet it is arrived using S, hence q^3
- j is making "middle" appearance, hence \sqrt{d}
- b is making "first" appearance, but not "last", hence \sqrt{m}
- Edge-value $1/d^2$

Edge-factors

F/S/R: $1/\sqrt{d}$

Vertex-factors

- a is making "middle" appearance, hence no factor
- i is not "first" nor "last", yet it is arrived using S, hence q^3
- j is making "middle" appearance, hence \sqrt{d}
- b is making "first" appearance, but not "last", hence \sqrt{m}
- Edge-value $1/d^2$

Edge-factors

F/S/R: $1/\sqrt{d}$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

Edge-factors

H:

 \sqrt{q}/\sqrt{d}

Vertex-factors

F/S/R: $1/\sqrt{d}$ First/Last: \sqrt{d} (or \sqrt{m})

Edge-factors

H:

 \sqrt{q}/\sqrt{d}

Vertex-factors

F/S/R: $1/\sqrt{d}$ First/Last: \sqrt{d} (or \sqrt{m})

Norm bounds in 2-steps

Edge-factors F/S/R: $1/\sqrt{d}$

H:

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- Norm bounds in 2-steps
 - Bound the local-value of each edge-labeling

Edge-factors F/S/R: $1/\sqrt{d}$ H:

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- Norm bounds in 2-steps
 - Bound the local-value of each edge-labeling
 - And then sum over all F/R/S/H-edge-labeling of a given shape

Edge-factors F/S/R: $1/\sqrt{d}$ H:

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- Norm bounds in 2-steps
 - Bound the local-value of each edge-labeling
 - And then sum over all F/R/S/H-edge-labeling of a given shape
- Summing over 4⁴-edge labelings gives a bound of $O(\sqrt{c})$ for A^{-1}

Edge-factors F/S/R: $1/\sqrt{d}$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- Norm bounds in 2-steps
 - Bound the local-value of each edge-labeling
 - And then sum over all F/R/S/H-edge-labeling of a given shape
- Summing over 4⁴-edge labelings gives a bound of $O(\sqrt{c})$ for A^{-1}
- **Exponentially** many more matrices that come up -> develop a systematic analysis

Edge-factors F/S/R: $1/\sqrt{d}$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- Norm bounds in 2-steps
 - Bound the local-value of each edge-labeling
 - And then sum over all F/R/S/H-edge-labeling of a given shape
- Summing over 4⁴-edge labelings gives a bound of $O(\sqrt{c})$ for A^{-1}
- **Exponentially** many more matrices that come up -> develop a systematic analysis

Edge-factors F/S/R: $1/\sqrt{d}$ First/Last: \sqrt{d} (or \sqrt{m}) H: \sqrt{q}/\sqrt{d}

- Norm bounds in 2-steps
 - Bound the local-value of each edge-labeling
 - And then sum over all F/R/S/H-edge-labeling of a given shape
- Summing over 4⁴-edge labelings gives a bound of $O(\sqrt{c})$ for A^{-1}
- **Exponentially** many more matrices that come up -> develop a systematic analysis

Edge-factors F/S/R: $1/\sqrt{d}$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

Wrapping up

- 1. Ellipsoid Fitting Conjecture
- 2. Constructing an Ellipsoid
- 3. Analysis via Graph Matrices
- 4. A Local Machinery for Tight Norm Bounds

Thank you!

Open Question [SCPW Conjecture] *d*,

• (Positive) If
$$m \leq (1 - \epsilon) \frac{d^2}{4}$$
 , t

- Our construction experimentally fails [PTVW '22]
- (Negative) If $m \ge (1 + \epsilon) \frac{d^2}{4}$, there does not exist such an ellipsoid w.h.p.

Open Question [SCPW Conjecture] For all $\epsilon > 0$, and for sufficiently large

there exists such an ellipsoid w.h.p.
References

[GJJ+20] Mrinalkanti Ghosh, Fernando Granha Jeronimo, Chris Jones, Aaron Potechin, and Goutham Rajendran. Sum-of-squares lower bounds for Sherrington-Kirkpatrick via planted affine planes.

[KD22] Daniel M Kane and Ilias Diakonikolas. A Nearly Tight Bound for Fitting an Ellipsoid to Gaussian Random Points. arXiv preprint arXiv:2212.11221, 2022.

[PTVW22] Aaron Potechin, Paxton Turner, Prayaag Venkat, and Alexander S Wein. *Near-optimal fitting of ellipsoids to random points*. arXiv preprint arXiv:2208.09493, 2022.

[SCPW12] James Saunderson, Venkat Chandrasekaran, Pablo A Parrilo, and Alan S Willsky. Diagonal and low-rank matrix decompositions, correlation matrices, and ellipsoid fitting. SIAM Journal on Matrix Analysis and Applications, 33(4):1395–1416, 2012.

[SPW13] James Saunderson, Pablo A Parrilo, and Alan S Willsky. Diagonal and low-rank decompositions and fitting ellipsoids to random points. In 52nd IEEE Conference on Decision and Control, pages 6031–6036. IEEE, 2013.