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Is the polylog dependence tight?
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•  for all ,  vT
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• .  Λ ⪰ 0

• Constant-factor away from the conjecture
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•   (immediate);Λ = Idd ⪰ 0

• For all ,  i ∈ [m] vT
i Λvi ≈ 1

• The quadratic-form constraints are “approximately" satisfied

• W.h.p., .|vT
i Λvi − 1 | ≤

log d
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• Our correction term has a nice form   for some 
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∑
a=1

wavavT
a w ∈ Rm

• Final matrix Λ = Idd − ∑
a∈[m]

wavavT
a

How do we pick w?
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Finding the correction coefficient w
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i Λvi = vT
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                                                 = ∥vi∥2
2 − ⟨M[i], w⟩
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                           (Exactly satisfying the constraint)= 1

i-th row of M
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If we pick w s.t. Mw = η
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Remaining questions

Picking  s.t. , and set w ∈ Rm Mw = η Λ = Idd −
m

∑
a=1

wavavT
a

1. Why is the vector w well-defined?

2. Why does   satisfy the PSDness constraint?Λ = Idd −
m

∑
a=1

wavavT
a

Both boil down to studying spectral norm of 
random matrices with polynomial entries 

Construction from       
[KD ’22]
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Why norm bounds?
• Want to find  s.t. w ∈ Rm Mw = η

• Sufficient to show  is full-rank, and take M w = M−1η

•  Idea: decompose  such that M = A + B

• A is a perturbed identity matrix, 

•  is a rank-2 componentB = UCV

• Woodbury Expansion:
(A + UCV)−1 = A−1 + A−1U(C−1 + VA−1U)−1VA−1

 M ∈ Rm×m : M[i, j] = ⟨vi, vj⟩2

η ∈ Rm : ηi := ∥vi∥2
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Our focus: showing  for A = Id + E
∥E∥ < 1
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• Neumann Series:  provided  (Id − T)−1 = ∑
k≥0

Tk ∥T∥sp < 1

•   (ignoring components with o(1) norm)A ≈ Id + A1 + A2

• A1[a, b] = ∑
i≠j∈[d]

va[i] ⋅ vb[i] ⋅ va[ j] ⋅ vb[ j]

•  A2[a, b] = ∑
i∈[d]

(va[i]2 −
1
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)(vb[i]2 −
1
d

)
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Bounding spectral norm 
of random matrices! 
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Why norm bounds?

• For the given w obtained by solving , we need to showMw = η

Λ = Idd + ∑
a∈[m]

wavavT
a ⪰ 0

• Implies PSDness by a triangle inequality. 
Again, bounding spectral 
norm of random matrices! 

Showing PSDness of Λ

Warning: w has complicated dependences on {vi}

Main Theorem: for , 
m ≤ cd2 ∥ ∑
a∈[m]

wavavT
a ∥sp < 1
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3. Analysis via Graph Matrices 

4. A Local Machinery for Tight Norm Bounds 
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• General set-up:

• Assume there is some underlying input, eg. v1, . . . , vm ∼ N(0,Idd)

• A matrix M: each entry is a polynomial of inputs in {vi}

• A baby example:

•  is a linear function of  M ∈ Rm×d : M[i, a] = vi[a] {vi}

• Backbone for the recent progress in average-case Sum-of-Squares Lower Bounds 

• eg. Planted Clique, Sparse Independent Set, Densest-k-Subgraph…
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•  A1[a, b] = ∑
i≠j∈[d]
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• Each entry is a degree-4 polynomial of vi
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Most results from RMT do not apply! 
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Spectral Norm Bounds for Graph Matrix
• Previous bounds are lossy in polylog(d, m) factors

• Our main technical work

• For the matrices that arise in our analysis, we give norm bounds that 
are tight up to an absolute constant

• Therefore, we are able to improve previous bounds  

m = O(
d2

polylog(d)
) m ≤ cd2
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• Trace-moment method: for any matrix M, and any ,    
where the expectation is taken over the underlying random input

q ∈ N E[∥M∥2q
sp] ≤ E[Tr(MMT)q]

• Higher-moments to get a w.h.p. bound

• Applying for :A1
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sp] ≤ E[(A1AT

1 )q] = E ∑
S1, T1, S2, T2, …Sq−1, Tq−1∈[m[

A1[S1, T1]AT
1 [T1, S2]⋯AT

1 [Tq−1, S1]

where the expectation is taken over input{vi}
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Basics for Trace-Moment Method
• Crucial idea for trace-moment method:

• each edge is independent -> the expectation factorizes over edges;

• each edge corresponds to a mean-0 r.v. -> it needs to appear at least 
twice in the walk (o.w. the expectation vanishes).

• Sufficient to get a rough norm bound (that loses polylog factors)

• We give a more fine-grained analysis to control the lower-order factors

• This is a walk of 2q-steps, we bound the “contribution” from each step

• Warning: each step may contain multiple edges
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• Each edge (random variable)’s appearance in the walk may be, 

• F (forward): uses a new edge, and arrive at a new vertex

• S (surprise): uses a new edge, and arrive at a “seen” vertex

• H (middle): uses an edge that is making middle appearance (neither first/last)

• R (return): uses an edge for the last time

• Each edge gives two types of contributions

• Vertex-factor (of the vertex it leads to): the combinatorial choice from counting

• Edge-factor: the analytical factor from expectation of the random variable
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A Taste of Our Local Analysis
• Assignment of edge-factor: for each random variable x,

• Assign a factor of  for first (F) and last (R) appearance each;
1

d

• if appears exactly twice, gives value ;E[x2] =
1
d

• If appears  times, gives a value at most ;t > 2 E[xt] ≤
tt/2

dt/2

• Assign a factor of  for each middle (non first/last) appearance.
t

d
≤

q

d



A Taste of Our Local Analysis



A Taste of Our Local Analysis
• Assignment of vertex-factor 



A Taste of Our Local Analysis
• Assignment of vertex-factor 

• Each vertex, when it first appears, contributes a value of d (or m)



A Taste of Our Local Analysis
• Assignment of vertex-factor 

• Each vertex, when it first appears, contributes a value of d (or m)

• We split the factor among its first and last appearance 



A Taste of Our Local Analysis
• Assignment of vertex-factor 

• Each vertex, when it first appears, contributes a value of d (or m)

• We split the factor among its first and last appearance 

• That is a factor of  (or )d m



A Taste of Our Local Analysis
• Assignment of vertex-factor 

• Each vertex, when it first appears, contributes a value of d (or m)

• We split the factor among its first and last appearance 

• That is a factor of  (or )d m

• (Main lemma) For any vertex’s subsequent appearance,



A Taste of Our Local Analysis
• Assignment of vertex-factor 

• Each vertex, when it first appears, contributes a value of d (or m)

• We split the factor among its first and last appearance 

• That is a factor of  (or )d m

• (Main lemma) For any vertex’s subsequent appearance,

If it is arrived via an H/S-edge, a cost of  suffices ;


If it is arrived via an R-edge, a cost of 1 suffices.


q3



A Taste of Our Local Analysis
• Assignment of vertex-factor 

• Each vertex, when it first appears, contributes a value of d (or m)

• We split the factor among its first and last appearance 

• That is a factor of  (or )d m

• (Main lemma) For any vertex’s subsequent appearance,

If it is arrived via an H/S-edge, a cost of  suffices ;


If it is arrived via an R-edge, a cost of 1 suffices.


q3



A Taste of Our Local Analysis
• Assignment of vertex-factor 

• Each vertex, when it first appears, contributes a value of d (or m)
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• (Main lemma) For any vertex’s subsequent appearance,
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If it is arrived via an R-edge, a cost of 1 suffices.
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Similar lemmas were known before for G.O.E. and adjacency matrix only
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• Assume the walk is tree-like (no S edge), and there is also no H edge

• Each time we are at a vertex, it is incident to only 1 F edge

• Hence, we do not need any cost to specify where an R edge leads to.

• When the walk is not tree-like

• Each S/H edge may incur confusion as a vertex may now be incident to multiple F 
edges

• Observation: each comes with a gap in the vertex-factor, and we can use this gap 
to encode auxiliary information 

• Gap: as opposed to going to a new vertex that gives , a label in q suffices nowd
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• (Main lemma) For any vertex’s subsequent appearance,

If it is arrived via an H/S-edge, a cost of  suffices ;


If it is arrived via an R-edge, a cost of 1 suffices.


q3

• Each vertex on the vertex boundary appears in both steps
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Wrapping up

1. Ellipsoid Fitting Conjecture 


2. Constructing an Ellipsoid


3. Analysis via Graph Matrices


4. A Local Machinery for Tight Norm Bounds 



Thank you!

Open Question [SCPW Conjecture]  For all , and for sufficiently large 
, 

• (Positive) If  , there exists such an ellipsoid w.h.p. 


• Our construction experimentally fails [PTVW ’22]


• (Negative) If , there does not exist such an ellipsoid 
w.h.p. 

ϵ > 0
d

m ≤ (1 − ϵ)
d2

4

m ≥ (1 + ϵ)
d2

4
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