Ellipsoid Fitting Up to a Constant

Jeff Xu Carnegie Mellon University

Joint Work with Tim Hsieh (CMU) , Pravesh Kothari (CMU) , and Aaron Potechin (UChicago)

Overview

1. Ellipsoid Fitting Conjecture

- 2. Constructing an Ellipsoid
- 3. Analysis via Graph Matrices
- 4. A Local Machinery for Tight Norm Bounds

• Given m random points $v_1, \ldots, v_m \in \mathbb{R}^d$ drawn from $\mathbb{N}(0, \mathbb{R})$

1 *d Idd*)

• Given m random points $v_1, \ldots, v_m \in \mathbb{R}^d$ drawn from $\mathbb{N}(0, \mathbb{R})$

1 *d Idd*)

Normalized to be roughly unit norm

- Given m random points $v_1, \ldots, v_m \in \mathbb{R}^d$ drawn from $\mathbb{N}(0, \mathbb{R})$
- Is there a symmetric matrix $\Lambda \in R^{d \times d}$ such that
	- $v_i^T \Lambda v_i = 1$ for all $v_i^I \Lambda v_i = 1$ for all v_i
	- $\Lambda \geq 0$ (Positive-semidefinite)?

1 *d Idd*)

Normalized to be roughly unit norm

- Given m random points $v_1, \ldots, v_m \in \mathbb{R}^d$ drawn from $\mathbb{N}(0, \mathbb{R})$ 1 *d Idd*)
- Is there a symmetric matrix $\Lambda \in R^{d \times d}$ such that

- $\Lambda \geq 0$ (Positive-semidefinite)?
- Geometrically, $\Lambda \in R^{d \times d}$ is an ellipsoid centered at origin that passes **through all m points on boundary.**

•
$$
v_i^T \Lambda v_i = 1
$$
 for all v_i

Normalized to be roughly unit norm

- Given m random points $v_1, \ldots, v_m \in \mathbb{R}^d$ drawn from drawn from $\mathbb{N}(0, \mathbb{R})$
- Is there a matrix $\Lambda \in R^{d \times d}$ such that
	- $v_i^T \Lambda v_i = 1$ for all v_i , and $\Lambda \geq 0$ (Positive-semidefinite)? $\nu_i^I \Lambda \nu_i = 1$ for all ν_i , and $\Lambda \geq 0$

```
1
d
  Idd)
```

```
1
d
  Idd)
```
- Given m random points $v_1, \ldots, v_m \in \mathbb{R}^d$ drawn from drawn from $\mathbb{N}(0, \mathbb{R})$
- Is there a matrix $\Lambda \in R^{d \times d}$ such that
	- $v_i^T \Lambda v_i = 1$ for all v_i , and $\Lambda \geq 0$ (Positive-semidefinite)? $\nu_i^I \Lambda \nu_i = 1$ for all ν_i , and $\Lambda \geq 0$
- **[SCPW Conjecture]** For all *ϵ* > 0, and for sufficiently large *d*,

```
1
d
  Idd)
```
re exists such an ellipsoid w.h.p.

- Given m random points $v_1, \ldots, v_m \in \mathbb{R}^d$ drawn from drawn from $\mathbb{N}(0, \mathbb{R})$
- Is there a matrix $\Lambda \in R^{d \times d}$ such that
	- $v_i^T \Lambda v_i = 1$ for all v_i , and $\Lambda \geq 0$ (Positive-semidefinite)? $\nu_i^I \Lambda \nu_i = 1$ for all ν_i , and $\Lambda \geq 0$
- **[SCPW Conjecture]** For all *ϵ* > 0, and for sufficiently large *d*,

. (Positive) If
$$
m \leq (1 - \epsilon) \frac{d^2}{4}
$$
, then

```
1
d
  Idd)
```
- Given m random points $v_1, \ldots, v_m \in \mathbb{R}^d$ drawn from drawn from $\mathbb{N}(0, \mathbb{R})$
- Is there a matrix $\Lambda \in R^{d \times d}$ such that
	- $v_i^T \Lambda v_i = 1$ for all v_i , and $\Lambda \geq 0$ (Positive-semidefinite)? $\nu_i^I \Lambda \nu_i = 1$ for all ν_i , and $\Lambda \geq 0$
- **[SCPW Conjecture]** For all *ϵ* > 0, and for sufficiently large *d*,

• **(Positive)** If $m \leq (1 - \epsilon) \frac{1}{4}$, there exists such an ellipsoid w.h.p. d^2 4

• **(Negative)** If $m \geq (1 + \epsilon) \frac{1}{4}$, there does not exist such an ellipsoid w.h.p. d^2 4

1 *d Idd*)

- Given m random points $v_1, \ldots, v_m \in \mathbb{R}^d$ drawn from drawn from $\mathbb{N}(0, \mathbb{R})$
- Is there a matrix $\Lambda \in R^{d \times d}$ such that
	- $v_i^T \Lambda v_i = 1$ for all v_i , and $\Lambda \geq 0$ (Positive-semidefinite)? $\nu_i^I \Lambda \nu_i = 1$ for all ν_i , and $\Lambda \geq 0$
- **[SCPW Conjecture]** For all *ϵ* > 0, and for sufficiently large *d*,

• **(Positive)** If $m \leq (1 - \epsilon) \frac{1}{4}$, there exists such an ellipsoid w.h.p. d^2 4

• **(Negative)** If $m \geq (1 + \epsilon) \frac{1}{4}$, there does not exist such an ellipsoid w.h.p. d^2 4

Sharp transition!

Conjecture:

Impossible when $m \geq (1 + \epsilon)$

• **m** equations $v_i^T \Lambda v_i = 1$ for symmetric $\Lambda \in R^{d \times d}$

Conjecture:

Impossible when $m \geq (1 + \epsilon)$

- **m** equations $v_i^T \Lambda v_i = 1$ for symmetric $\Lambda \in R^{d \times d}$
	- View each as a linear constrain

Conjecture: Impossible when $m \geq (1 + \epsilon)$

$$
i \text{tric } \Lambda \in R^{d \times d}
$$

at on
$$
\frac{d(d+1)}{2} \text{ entries of } \Lambda
$$

- **m** equations $v_i^T \Lambda v_i = 1$ for symmetric $\Lambda \in R^{d \times d}$
	- View each as a linear constrain
	- When randomly chosen, as long than the degree of freedom

Conjecture: Impossible when $m \geq (1 + \epsilon)$

tric
$$
\Lambda \in R^{d \times d}
$$

at on $\frac{d(d+1)}{2}$ entries of Λ
ag as $m > \frac{d(d+1)}{2}$, more constraints

- **m** equations $v_i^T \Lambda v_i = 1$ for symmetric $\Lambda \in R^{d \times d}$
	- View each as a linear constraint
	- When randomly chosen, as long than the degree of freedom

Conjecture: Impossible when $m \geq (1 + \epsilon)$

tric
$$
\Lambda \in R^{d \times d}
$$

at on $\frac{d(d+1)}{2}$ entries of Λ
ig as $m > \frac{d(d+1)}{2}$, more constraints

—> w.h.p., the linear system cannot be satisfied.

- **m** equations $v_i^T \Lambda v_i = 1$ for symmetric $\Lambda \in R^{d \times d}$
	- View each as a linear constraint
	- When randomly chosen, as long than the degree of freedom

Conjecture: Impossible when $m \geq (1 + \epsilon)$

tric
$$
\Lambda \in R^{d \times d}
$$

\n
$$
\frac{d(d+1)}{2} \text{ entries of } \Lambda
$$
\n
$$
\text{as } m > \frac{d(d+1)}{2} \text{, more constraints}
$$

 \rightarrow w.h.p., the linear system cannot be satisfied.

• **Open Question**: Can we improve upon this bound? PSDness?

Possible when $m \leq (1 + \epsilon)$ d^2 4

Conjecture:

• [Saunderson, Parrilo, Willsky '13] $m = O(d^4)$

Possible when $m \leq (1 + \epsilon)$ d^2 4

$$
6/5-c
$$
 for any constant c > 0

Conjecture:

- [Saunderson, Parrilo, Willsky '13] $m = O(d^{6/5-c})$ for any constant c>0
- Recently, motivated from studies in Sum-of-Squares Algorithms

Conjecture: Possible when $m \leq (1 + \epsilon)$ d^2 4

- [Saunderson, Parrilo, Willsky '13] $m = O(d^{6/5-c})$ for any constant c>0
- Recently, motivated from studies in Sum-of-Squares Algorithms
	- [Ghosh, Jeronimo, Jones, Potechin, Rajendran '20] $m = \tilde{O}(d^{3/2})$

- [Saunderson, Parrilo, Willsky '13] $m = O(d^{6/5-c})$ for any constant c>0
- Recently, motivated from studies in Sum-of-Squares Algorithms
	- [Ghosh, Jeronimo, Jones, Potechin, Rajendran '20] $m = \tilde{O}(d^{3/2})$
		- Implicitly extends to $m = O($

 d^2 *polylog*(*d*))

- [Saunderson, Parrilo, Willsky '13] $m = O(d^{6/5-c})$ for any constant c>0
- Recently, motivated from studies in Sum-of-Squares Algorithms
	- [Ghosh, Jeronimo, Jones, Potechin, Rajendran '20] $m = \tilde{O}(d^{3/2})$
		- Implicitly extends to $m = O($
		-

• Obtained also by [Potechin, Turner, Venkat, Wein '22] and [Kane, Diakonikolas '22]

- [Saunderson, Parrilo, Willsky '13] $m = O(d^{6/5-c})$ for any constant c>0
- Recently, motivated from studies in Sum-of-Squares Algorithms
	- [Ghosh, Jeronimo, Jones, Potechin, Rajendran '20] $m = \tilde{O}(d^{3/2})$
		- Implicitly extends to $m = O($
		-

 \bullet Best-known bound $m = O($ d^2 *log*4(*d*))

• Obtained also by [Potechin, Turner, Venkat, Wein '22] and [Kane, Diakonikolas '22]

- [Saunderson, Parrilo, Willsky '13] $m = O(d^{6/5-c})$ for any constant c>0
- Recently, motivated from studies in Sum-of-Squares Algorithms
	- [Ghosh, Jeronimo, Jones, Potechin, Rajendran '20] $m = \tilde{O}(d^{3/2})$
		- Implicitly extends to $m = O($
		-

 \bullet Best-known bound $m = O($ d^2 *log*4(*d*))

 \bullet \bullet \bullet \bullet

• Obtained also by [Potechin, Turner, Venkat, Wein '22] and [Kane, Diakonikolas '22]

- [Saunderson, Parrilo, Willsky '13] $m = O(d^{6/5-c})$ for any constant c>0
- Recently, motivated from studies in Sum-of-Squares Algorithms
	- [Ghosh, Jeronimo, Jones, Potechin, Rajendran '20] *m* = *O* $\tilde{O}(d^{3/2})$
		- \bullet Implicitly extends to $m = O($
		-

 \bullet Best-known bound $m = O($ d^2 *log*4(*d*))

 \bullet \bullet \bullet \bullet

• Obtained also by [Potechin, Turner, Venkat, Wein '22] and [Kane, Diakonikolas '22]

Is the polylog dependence tight?

-
- For $m \leq cd^2$ for some absolute constant $c > 0$, there is a symmetric matrix such that $\Lambda \in R^{d \times d}$

-
- For $m \leq cd^2$ for some absolute constant $c > 0$, there is a symmetric matrix such that $\Lambda \in R^{d \times d}$

•
$$
v_i^T \Lambda v_i = 1
$$
 for all v_i ,

-
- For $m \leq cd^2$ for some absolute constant $c > 0$, there is a symmetric matrix such that $\Lambda \in R^{d \times d}$
	- $v_i^I \Lambda v_i = 1$ for all v_i , *T* $v_i^I \Lambda v_i = 1$ for all v_i
	- $\cdot \Lambda \geq 0$.

-
- For $m \leq cd^2$ for some absolute constant $c > 0$, there is a symmetric matrix such that $\Lambda \in R^{d \times d}$
	- $v_i^I \Lambda v_i = 1$ for all v_i , *T* $v_i^I \Lambda v_i = 1$ for all v_i
	- $\cdot \Lambda \geq 0$.
- **• Constant-factor** away from the conjecture

• High-level idea

- High-level idea
	- Construct a matrix $\Lambda \in R^{d \times d}$ explicitly from v_1, \ldots, v_m

- High-level idea
	- Construct a matrix $\Lambda \in R^{d \times d}$ explicitly from v_1, \ldots, v_m
	- Show $\Lambda \in R^{d \times d}$ satisfies both constraints

- High-level idea
	- Construct a matrix $\Lambda \in R^{d \times d}$ explicitly from v_1, \ldots, v_m
	- Show $\Lambda \in R^{d \times d}$ satisfies both constraints
		- **(Quadratic-form)** $v_i^I \Lambda v_i = 1$ for all v_i , *T* $v_i^I \Lambda v_i = 1$ for all v_i
Proof Overview

- High-level idea
	- Construct a matrix $\Lambda \in R^{d \times d}$ explicitly from v_1, \ldots, v_m
	- Show $\Lambda \in R^{d \times d}$ satisfies both constraints
		- **(Quadratic-form)** $v_i^I \Lambda v_i = 1$ for all v_i , *T* $v_i^I \Lambda v_i = 1$ for all v_i
		- $(PSDness)$ $\Lambda \geq 0$.

Proof Overview

- High-level idea
	- Construct a matrix $\Lambda \in R^{d \times d}$ explicitly from v_1, \ldots, v_m
	- Show $\Lambda \in R^{d \times d}$ satisfies both constraints
		- **(Quadratic-form)** $v_i^I \Lambda v_i = 1$ for all v_i , *T*
		- \cdot (PSDness) $\Lambda \geq 0$.
- $v_i^I \Lambda v_i = 1$ for all v_i

Overview

- 1. Ellipsoid Fitting Conjecture
- **2. Candidate Construction**
- 3. Graph Matrices
- 4. Tight Norm Bounds for Graph Matrices

• Given m random points $v_1, \ldots, v_m \in \mathbb{R}^d$ drawn from drawn from $\mathbb{N}(0, \mathbb{R})$ 1 *d Idd*)

- Given m random points $v_1, \ldots, v_m \in \mathbb{R}^d$ drawn from drawn from $\mathbb{N}(0, \mathbb{R})$ 1 *d Idd*)
- Observation: setting $\Lambda = Id_d$ "almost" works

- Given m random points $v_1, \ldots, v_m \in \mathbb{R}^d$ drawn from drawn from $\mathbb{N}(0, \mathbb{R})$ 1 *d Idd*)
- Observation: setting $\Lambda = Id_d$ "almost" works
	- $\Lambda = Id_d \geq 0$ (immediate);

- Given m random points $v_1, \ldots, v_m \in \mathbb{R}^d$ drawn from drawn from $\mathbb{N}(0, \mathbb{R})$ 1 *d Idd*)
- Observation: setting $\Lambda = Id_d$ "almost" works
	- $\Lambda = Id_d \geq 0$ (immediate);
	- For all $i \in [m]$, v_i^T $\sum_i^I \Lambda v_i \approx 1$

- Given m random points $v_1, \ldots, v_m \in \mathbb{R}^d$ drawn from drawn from $\mathbb{N}(0, \mathbb{R})$ 1 *d Idd*)
- Observation: setting $\Lambda = Id$ **"almost"** works
	- $\Lambda = Id_{d} \geq 0$ (immediate);
	- For all $i \in [m]$, v_i^T $\sum_i^I \Lambda v_i \approx 1$
		- The quadratic-form constraints are **"approximately"** satisfied

- Given m random points $v_1, \ldots, v_m \in \mathbb{R}^d$ drawn from drawn from $\mathbb{N}(0, \mathbb{R})$ 1 *d Idd*)
- Observation: setting $\Lambda = Id_d$ "almost" works
	- $\Lambda = Id_{d} \geq 0$ (immediate);
	- For all $i \in [m]$, v_i^T $\sum_i^I \Lambda v_i \approx 1$
		- The quadratic-form constraints are **"approximately"** satisfied

$$
\text{W.h.p., } |\nu_i^T \Lambda \nu_i - 1| \le \frac{\log d}{\sqrt{d}}.
$$

-
- *d*

-
- Starting from Id_d , and correct all the deviations of the quadratic form

• Given m random points $v_1, \ldots, v_m \in \mathbb{R}^d$ drawn from drawn from $\mathbb{N}(0, \mathbb{R})$ 1 *d Idd*)

- Given m random points $v_1, \ldots, v_m \in \mathbb{R}^d$ drawn from drawn from $\mathbb{N}(0, \mathbb{R})$ 1 *d Idd*)
- Starting from Id_{d} , and correct all the deviations of the quadratic form
	- •
• Our correction term has a nice

form
$$
\sum_{a=1}^{m} w_a v_a v_a^T
$$
 for some $w \in \mathbb{R}^m$

-
- Starting from Id_{d} , and correct all the deviations of the quadratic form
	- •
• Our correction term has a nice form $\sum_{n} w_n v_n^T$ for some

• Given m random points $v_1, \ldots, v_m \in \mathbb{R}^d$ drawn from drawn from $\mathbb{N}(0, \mathbb{R})$ 1 *d Idd*)

m ∑ *a*=1 $W_a V_a V_a^T$ for some $w \in \mathbb{R}^m$ $W_a V_a V_a^T$

• Final matrix $\Lambda = Id_d - \sum$ *a*∈[*m*]

-
- Starting from Id_{d} , and correct all the deviations of the quadratic form
	- •
• Our correction term has a nice form $\sum_{n} w_n v_n^T$ for some

• Given m random points $v_1, \ldots, v_m \in \mathbb{R}^d$ drawn from drawn from $\mathbb{N}(0, \mathbb{R})$ 1 *d Idd*)

m ∑ *a*=1 $W_a V_a V_a^T$ for some $w \in \mathbb{R}^m$ $W_a V_a V_a^T$

• Final matrix $\Lambda = Id_d - \sum$ *a*∈[*m*]

-
- Starting from Id_{d} , and correct all the deviations of the quadratic form
	- •
• Our correction term has a nice form $\sum_{n} w_n v_n^T$ for some

• Given m random points $v_1, \ldots, v_m \in \mathbb{R}^d$ drawn from drawn from $\mathbb{N}(0, \mathbb{R})$ 1 *d Idd*)

• Final matrix $\Lambda = Id_d - \sum$ *a*∈[*m*]

e form
$$
\sum_{a=1}^{m} w_a v_a v_a^T
$$
 for some $w \in \mathbb{R}^m$
 $w_a v_a v_a^T$ How do we pick w?

Finding the correction coefficient w • Let $\eta_i := ||v_i||_2^2 - 1$ be the deviation of quadratic-form constraint $\Lambda = Id_d + \sum$ *a*∈[*m*]

 $\frac{2}{2}$ $rac{2}{2} - 1$

- Let $\eta_i := ||v_i||_2^2 1$ be the deviation of quadratic-form constraint $\frac{2}{2}$ $rac{2}{2} - 1$
- Consider a matrix $M \in \mathbb{R}^{m \times m}$ s.t. $M[i, j] = \langle v_i, v_j \rangle$ \rangle^2

- Let $\eta_i := ||v_i||_2^2 1$ be the deviation of quadratic-form constraint $\frac{2}{2}$ $rac{2}{2} - 1$
- Consider a matrix $M \in \mathbb{R}^{m \times m}$ s.t. $M[i, j] = \langle v_i, v_j \rangle$

For any i,
$$
v_i^T \Lambda v_i = v_i^T I d_a
$$

 \rangle^2 $\sum_{i}^{I}Id_{d}v_{i} - \sum_{j}^{I}w_{j}\langle v_{i},v_{j}\rangle$ *j*∈[*m*] \rangle^2

- Let $\eta_i := ||v_i||_2^2 1$ be the deviation of quadratic-form constraint $\frac{2}{2}$ $rac{2}{2} - 1$
- Consider a matrix $M \in \mathbb{R}^{m \times m}$ s.t. $M[i, j] = \langle v_i, v_j \rangle$

For any i,
$$
v_i^T \Lambda v_i = v_i^T I d_a
$$

 $= ||v_i$ $\frac{2}{2}$

 \rangle^2 $\sum_{i}^{I}Id_{d}v_{i} - \sum_{j}^{I}w_{j}\langle v_{i},v_{j}\rangle$ *j*∈[*m*] \rangle^2

 $\frac{2}{2} - \langle M[i], w \rangle$

- Let $\eta_i := ||v_i||_2^2 1$ be the deviation of quadratic-form constraint $\frac{2}{2}$ $rac{2}{2} - 1$
-

• Consider a matrix
$$
M \in \mathbb{R}^{m \times m}
$$
 s.t. $M[i, j] = \langle v_i, v_j \rangle^2$
For any i, $v_i^T \Lambda v_i = v_i^T I d_d v_i - \sum_{j \in [m]} w_j \langle v_i, v_j \rangle^2$

$$
= ||v_i||_2^2 - \langle M[i], w \rangle
$$

- Let $\eta_i := ||v_i||_2^2 1$ be the deviation of quadratic-form constraint $\frac{2}{2}$ $rac{2}{2} - 1$
-

• Consider a matrix
$$
M \in \mathbb{R}^{m \times m}
$$
 s.t. $M[i, j] = \langle v_i, v_j \rangle^2$
For any i, $v_i^T \Lambda v_i = v_i^T I d_d v_i - \sum_{j \in [m]} w_j \langle v_i, v_j \rangle^2$

$$
= ||v_i||_2^2 - \langle M[i], w \rangle
$$

If we pick w s.t. $Mw = \eta$

- Let $\eta_i := ||v_i||_2^2 1$ be the deviation of quadratic-form constraint $\frac{2}{2}$ $rac{2}{2} - 1$
-

• Consider a matrix
$$
M \in \mathbb{R}^{m \times m}
$$
 s.t. $M[i, j] = \langle v_i, v_j \rangle^2$
For any i, $v_i^T \Lambda v_i = v_i^T I d_d v_i - \sum_{j \in [m]} w_j \langle v_i, v_j \rangle^2$

$$
= ||v_i||_2^2 - \langle M[i], w \rangle
$$

$$
= ||v_i||_2^2 - (||v_i||_2^2 - 1)
$$

If we pick w s.t. $Mw = \eta$

 η *_i*

 η_i = 1 (**Exactly** satisfying the constraint)

Finding the correction coefficient w $\Lambda = Id_d + \sum$ *a*∈[*m*]

- Let $\eta_i := ||v_i||_2^2 1$ be the deviation of quadratic-form constraint $\frac{2}{2}$ $rac{2}{2} - 1$
-

• Consider a matrix
$$
M \in \mathbb{R}^{m \times m}
$$
 s.t. $M[i, j] = \langle v_i, v_j \rangle^2$
For any i, $v_i^T \Lambda v_i = v_i^T I d_d v_i - \sum_{j \in [m]} w_j \langle v_i, v_j \rangle^2$

$$
= ||v_i||_2^2 - \langle M[i], w \rangle
$$

$$
= ||v_i||_2^2 - (||v_i||_2^2 - 1)
$$

If we pick w s.t. $Mw = \eta$

-
-

 $Picking w \in \mathbf{R}^m$ s.t. $Mw = \eta$, and set $\Lambda = Id_d - \eta$

 $Picking w \in \mathbf{R}^m$ s.t. $Mw = \eta$, and set $\Lambda = Id_d - \eta$

m ∑ *a*=1 $W_a V_a V_a^T$

Construction from [KD '22]

 $Picking w \in \mathbf{R}^m$ s.t. $Mw = \eta$, and set $\Lambda = Id_d - \eta$

1. Why is the vector w well-defined?

Construction from [KD '22]

 $Picking w \in \mathbf{R}^m$ s.t. $Mw = \eta$, and set $\Lambda = Id_d - \eta$

1. Why is the vector w well-defined?

2. Why does $\Lambda = Id_d - \sum w_a v_a v_a^I$ satisfy the PSDness constraint? ∑ *a*=1 $W_a V_a V_a^T$

2. Why does
$$
\Lambda = Id_d - \sum_{a=1}^{m} a_a
$$

 $Picking w \in \mathbf{R}^m$ s.t. $Mw = \eta$, and set $\Lambda = Id_d - \eta$

1. Why is the vector w well-defined?

2. Why does $\Lambda = Id_d - \sum w_a v_a v_a^I$ satisfy the PSDness constraint? *a*=1 $W_a V_a V_a^T$

2. Why does
$$
\Lambda = Id_d - \sum_{a=1}^{m}
$$

 $Picking w \in \mathbf{R}^m$ s.t. $Mw = \eta$, and set $\Lambda = Id_d - \eta$

1. Why is the vector w well-defined?

2. Why does
$$
\Lambda = Id_d - \sum_{a=1}^{m} w_a v_a v_a^T
$$
 satisfy the PSDness constraint?

Both boil down to studying **spectral norm** of **random matrice**s with **polynomial entries**

Why norm bounds? ∥² **(Vector w is well-defined)** ² − 1

$, v_j\rangle^2$ $\eta \in \mathbb{R}^m : \eta_i := ||v_i||_2^2 - 1$

Why norm bounds? ² **(Vector w is well-defined)** ²

• Want to find $w \in \mathbb{R}^m$ s.t. $Mw = \eta$

 $M \in \mathbf{R}^{m \times m} : M[i,j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := ||v_i||_2^2 - 1$

Why norm bounds? ∥² **(Vector w is well-defined)** ² − 1

- Want to find $w \in \mathbb{R}^m$ s.t. $Mw = \eta$
- Sufficient to show M is full-rank, and take $w = M^{-1}\eta$

 $M \in \mathbf{R}^{m \times m} : M[i,j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbb{R}^m : \eta_i := ||v_i||_2^2 - 1$

Why norm bounds? ∥² **(Vector w is well-defined)** ² − 1

- Want to find $w \in \mathbb{R}^m$ s.t. $Mw = \eta$
- Sufficient to show M is full-rank, and take $w = M^{-1}\eta$
- Idea: decompose $M = A + B$ such that

 $M \in \mathbf{R}^{m \times m} : M[i,j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbb{R}^m : \eta_i := ||v_i||_2^2 - 1$

- Want to find $w \in \mathbb{R}^m$ s.t. $Mw = \eta$
- Sufficient to show M is full-rank, and take $w = M^{-1}\eta$
- Idea: decompose $M = A + B$ such that
	- A is a perturbed identity matrix,

 $M \in \mathbf{R}^{m \times m} : M[i,j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbb{R}^m : \eta_i := ||v_i||_2^2 - 1$

Why norm bounds? ∥² **(Vector w is well-defined)** ² − 1

Why norm bounds? ∥² **(Vector w is well-defined)** ² − 1

- Want to find $w \in \mathbb{R}^m$ s.t. $Mw = \eta$
- Sufficient to show M is full-rank, and take $w = M^{-1}\eta$
- Idea: decompose $M = A + B$ such that
	- A is a perturbed identity matrix,
	- $B = UCV$ is a rank-2 component

 $M \in \mathbf{R}^{m \times m} : M[i,j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbb{R}^m : \eta_i := ||v_i||_2^2 - 1$

Why norm bounds? ∥² **(Vector w is well-defined)** ² − 1

- Want to find $w \in \mathbb{R}^m$ s.t. $Mw = \eta$
- Sufficient to show M is full-rank, and take $w = M^{-1}\eta$
- Idea: decompose $M = A + B$ such that
	- A is a perturbed identity matrix,
	- $B = UCV$ is a rank-2 component
- Woodbury Expansion: $(A + UCV)^{-1} = A^{-1} + A^{-1}U(C^{-1} + VA^{-1}U)$

 $M \in \mathbf{R}^{m \times m} : M[i,j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbb{R}^m : \eta_i := ||v_i||_2^2 - 1$

−1 *VA*−¹

Why norm bounds? ∥² **(Vector w is well-defined)** ² − 1

- Want to find $w \in \mathbb{R}^m$ s.t. $Mw = \eta$
- Sufficient to show M is full-rank, and take $w = M^{-1}\eta$
- Idea: decompose $M = A + B$ such that
	- A is a perturbed identity matrix,
	- $B = UCV$ is a rank-2 component
- Woodbury Expansion: $(A + UCV)^{-1} = A^{-1} + A^{-1}U(C^{-1} + VA^{-1}U)$

 $M \in \mathbf{R}^{m \times m} : M[i,j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbb{R}^m : \eta_i := ||v_i||_2^2 - 1$

Our focus: showing $A = Id + E$ for ∥*E*∥ < 1

```
−1
VA−1
```


Why norm bounds? Studying A^{-1}

Why norm bounds? Studying A^{-1}

Neumann Series: $(Id-T)^{-1} = \sum T^k$ provided $||T||_{sp} < 1$

 $M \in \mathbf{R}^{m \times m}$: $M[i, j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbb{R}^m : \eta_i := ||v_i||_2^2 - 1$

$k\geq 0$

k≥0 $|||T||_{sp} := \max$ $v:$ $||v||_2=1$ $\|Tv\|_2^2$

Why norm bounds? Studying *A*−¹

•
• Neumann Series: $(Id - T)^{-1} = \sum T^k$ provided $||T||_{sp} < 1$

Why norm bounds? Studying *A*−¹

•
• Neumann Series: $(Id - T)^{-1} = \sum T^k$ provided $||T||_{sp} < 1$

• $A \approx Id + A_1 + A_2$ (ignoring components with o(1) norm)

• $A \approx Id + A_1 + A_2$ (ignoring components with o(1) norm) •
• $A_1[a, b] = \sum_i v_a[i] \cdot v_b[i] \cdot v_a[j] \cdot v_b[j]$ *i*≠*j*∈[*d*]

 $M \in \mathbf{R}^{m \times m} : M[i,j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := ||v_i||_2^2 - 1$

Why norm bounds? Studying *A*−¹

• Neumann Series: $(Id - T)^{-1} = \sum T^k$ provided $||T||_{sp} < 1$

$$
\cdot \; v_a[j] \cdot v_b[j]
$$

• $A \approx Id + A_1 + A_2$ (ignoring components with o(1) norm) •
• $A_1[a, b] = \sum_i v_a[i] \cdot v_b[i] \cdot v_a[j] \cdot v_b[j]$ *i*≠*j*∈[*d*]

•
• $A_2[a, b] = \sum (v_a[i])$ *i*∈[*d*] $\frac{1}{2}$ *d*

 $M \in \mathbf{R}^{m \times m} : M[i,j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := ||v_i||_2^2 - 1$

Why norm bounds? Studying *A*−¹

• Neumann Series: $(Id - T)^{-1} = \sum_i T^k$ provided

$$
\sum_{k\geq 0} T^k \text{ provided } ||T||_{sp} < 1
$$
\n
$$
||T||_{sp} := \max_{v: ||v||_2 = 1} ||Tv||_2^2
$$

$$
\cdot \; \nu_a[j] \cdot \nu_b[j]
$$

$$
)(v_b[i]^2 - \frac{1}{d})
$$

• $A \approx Id + A_1 + A_2$ (ignoring components with o(1) norm) •
• $A_1[a, b] = \sum_i v_a[i] \cdot v_b[i] \cdot v_a[j] \cdot v_b[j]$ *i*≠*j*∈[*d*]

•
• $A_2[a, b] = \sum (v_a[i])$ *i*∈[*d*] $\frac{1}{2}$ *d*

 $M \in \mathbf{R}^{m \times m} : M[i,j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := ||v_i||_2^2 - 1$

Why norm bounds? Studying *A*−¹

•
• Neumann Series: $(Id-T)^{-1} = \sum$

$$
\sum_{k\geq 0} T^k \text{ provided } ||T||_{sp} < 1
$$
\n
$$
||T||_{sp} := \max_{v: ||v||_2 = 1} ||Tv||_2^2
$$

$$
\cdot \; v_a[j] \; \cdot \; v_b[j]
$$

$$
)(v_b[i]^2 - \frac{1}{d})
$$

Bounding spectral norm of random matrices!

• For the given w obtained by solving $Mw = \eta$, we need to show

• For the given w obtained by solving $Mw = \eta$, we need to show

$$
\Lambda = Id_d + \sum_{a \in [m]} w_a v_a v_a^T \ge 0
$$

• For the given w obtained by solving $Mw = \eta$, we need to show

2, $\|\sum w_a v_a v_a^T\|_{sp} < 1$ *a*∈[*m*]

$$
\Lambda = Id_d + \sum_{a \in [m]} w_a v_a v_a^T \ge 0
$$

Main Theorem: for $m \leq cd^2$,

• For the given w obtained by solving $Mw = \eta$, we need to show

2, $\|\sum w_a v_a v_a^T\|_{sp} < 1$ *a*∈[*m*]

$$
\Lambda = Id_d + \sum_{a \in [m]} w_a v_a v_a^T \ge 0
$$

Main Theorem: for $m \leq cd^2$,

• For the given w obtained by solving $Mw = \eta$, we need to show

2, $\|\sum w_a v_a v_a^T\|_{sp} < 1$ *a*∈[*m*]

$$
\Lambda = Id_d + \sum_{a \in [m]} w_a v_a v_a^T \ge 0
$$

Main Theorem: for $m \leq cd^2$,

• For the given w obtained by solving $Mw = \eta$, we need to show

$$
\Lambda = Id_d + \sum_{a \in [m]} w_a v_a v_a^T \ge 0
$$

Main Theorem: for $m \leq cd^2$,

2, $\|\sum w_a v_a v_a^T\|_{sp} < 1$ *a*∈[*m*]

• Implies PSDness by a triangle inequality.

• For the given w obtained by solving $Mw = \eta$, we need to show

$$
\Lambda = Id_d + \sum_{a \in [m]} w_a v_a v_a^T \ge 0
$$

Main Theorem: for $m \leq cd^2$,

2, $\|\sum w_a v_a v_a^T\|_{sp} < 1$ *a*∈[*m*]

• Implies PSDness by a triangle inequality.

$$
\Lambda = Id_d + \sum_{a \in [m]} w_a v_a v_a^T \ge 0
$$

Main Theorem: for $m \leq cd$

Why norm bounds? Showing PSDness of Λ

• For the given w obtained by solving $Mw = \eta$, we need to show

• Implies PSDness by a triangle inequality.

 $M \in \mathbf{R}^{m \times m} : M[i,j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := ||v_i||_2^2 - 1$

Again, bounding spectral norm of random matrices!

$$
|l^2, \|\sum_{a \in [m]} w_a v_a v_a^T\|_{sp} < 1
$$

$$
\Lambda = Id_d + \sum_{a \in [m]} w_a v_a v_a^T \ge 0
$$

Main Theorem: for $m \leq cd$

• Implies PSDness by a triangle inequality.

Why norm bounds? Showing PSDness of Λ

• For the given w obtained by solving $Mw = \eta$, we need to show

Again, bounding spectral norm of random matrices!

Warning: w has complicated dependences on {*vi* }

$$
||P_{a}|| \sum_{a \in [m]} w_a v_a v_a^T||_{sp} < 1
$$

Overview

- 1. Ellipsoid Fitting Conjecture
- 2. Constructing an Ellipsoid
- **3. Analysis via Graph Matrices**
- 4. A Local Machinery for Tight Norm Bounds

-
- -
- -
-
-
-
- - - -
			-
-
-
-
-
- -
	-
-
- -
-
-
-
-
-
-
-
-
-
- - -
		-
	-
	-
- -
	-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- -
-
-

· General set-up:

-
- -
- -
-
-
-
- - - -
			-
-
-
-
-
- -
	-
-
- -
-
-
-
-
-
-
-
-
-
- - -
		-
	-
	-
- -
	-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- -
-
-

- General set-up:
	-

- General set-up:
	-
	- A matrix **M**: each entry is a polynomial of inputs in $\{v_i\}$

- General set-up:
	-
	- A matrix **M**: each entry is a polynomial of inputs in $\{v_i\}$
- A baby example:

- General set-up:
	-
	- A matrix **M**: each entry is a polynomial of inputs in $\{v_i\}$
- A baby example:
	- $M \in R^{m \times d}$: $M[i, a] = v_i[a]$ is a linear function of $\{v_i\}$

- General set-up:
	-
	- A matrix **M**: each entry is a polynomial of inputs in $\{v_i\}$
- A baby example:
	- $M \in R^{m \times d}$: $M[i, a] = v_i[a]$ is a linear function of $\{v_i\}$
-

• Assume there is some underlying input, eg. $v_1, \ldots, v_m \thicksim \mathbf{N}(0, Id_d)$

• Backbone for the recent progress in average-case Sum-of-Squares Lower Bounds

- General set-up:
	-
	- A matrix **M**: each entry is a polynomial of inputs in $\{v_i\}$
- A baby example:
	- $M \in R^{m \times d}$: $M[i, a] = v_i[a]$ is a linear function of $\{v_i\}$
- -

• Assume there is some underlying input, eg. $v_1, \ldots, v_m \thicksim \mathbf{N}(0, Id_d)$

• Backbone for the recent progress in average-case Sum-of-Squares Lower Bounds

• eg. Planted Clique, Sparse Independent Set, Densest-k-Subgraph…

 $M \in \mathbf{R}^{m \times m} : M[i, j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbb{R}^m : \eta_i := ||v_i||_2^2 - 1$

• Each entry is a degree-4 polynomial of v_i

 $M \in \mathbf{R}^{m \times m} : M[i,j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := ||v_i||_2^2 - 1$

- Each entry is a degree-4 polynomial of v_i
- Represented by a "graph"

 $M \in \mathbf{R}^{m \times m} : M[i,j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := ||v_i||_2^2 - 1$

- Each entry is a degree-4 polynomial of v_i
- Represented by a "graph"

 $M \in \mathbf{R}^{m \times m} : M[i,j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := ||v_i||_2^2 - 1$

• Each entry is a degree-4 polynomial of v_i

• Represented by a "graph"

 $M \in \mathbf{R}^{m \times m} : M[i,j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := ||v_i||_2^2 - 1$

• Each entry is a degree-4 polynomial of v_i

• Represented by a "graph"

 $M \in \mathbf{R}^{m \times m} : M[i,j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := ||v_i||_2^2 - 1$

• Each entry is a degree-4 polynomial of v_i

• Represented by a "graph"

 $M \in \mathbf{R}^{m \times m} : M[i,j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := ||v_i||_2^2 - 1$

•
• $A_1[a, b] = \sum_i v_a[i] \cdot v_b[i] \cdot v_a[j] \cdot v_b[j]$ *i*≠*j*∈[*d*] Zooming into $A_1 \in \mathbb{R}^{m \times m}$

• Each entry is a degree-4 polynomial of v_i

•
• $A_1[a, b] = \sum_i v_a[i] \cdot v_b[i] \cdot v_a[j] \cdot v_b[j]$ *i*≠*j*∈[*d*] Zooming into $A_1 \in \mathbb{R}^{m \times m}$

- Each entry is a degree-4 polynomial of v_i
- Correlations across entries

•
• $A_1[a, b] = \sum_i v_a[i] \cdot v_b[i] \cdot v_a[j] \cdot v_b[j]$ *i*≠*j*∈[*d*] Zooming into $A_1 \in \mathbb{R}^{m \times m}$

- Each entry is a degree-4 polynomial of v_i
- Correlations across entries
	- We only have *md*-bits of randomness from $\{v_i\}$

 $M \in \mathbf{R}^{m \times m} : M[i,j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := ||v_i||_2^2$

•
• $A_1[a, b] = \sum_i v_a[i] \cdot v_b[i] \cdot v_a[j] \cdot v_b[j]$ *i*≠*j*∈[*d*] Zooming into $A_1 \in \mathbb{R}^{m \times m}$

- Each entry is a degree-4 polynomial of v_i
- Correlations across entries
	- We only have *md*-bits of randomness from $\{v_i\}$
	- This is a matrix of $m^2 \gg md$ entries. Correlation is inevitable!

 $M \in \mathbf{R}^{m \times m} : M[i,j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := ||v_i||_2^2$

•
• $A_1[a, b] = \sum_i v_a[i] \cdot v_b[i] \cdot v_a[j] \cdot v_b[j]$ *i*≠*j*∈[*d*] **Zooming into** $A_1 \in \mathbb{R}^{m \times m}$

- Each entry is a degree-4 polynomial of v_i
- Correlations across entries
	- We only have *md*-bits of randomness from $\{v_i\}$
	- This is a matrix of $m^2 \gg md$ entries. Correlation is inevitable! **Most results from RMT do not apply!**

 $M \in \mathbf{R}^{m \times m} : M[i,j] = \langle v_i, v_j \rangle^2$ $\eta \in \mathbf{R}^m : \eta_i := ||v_i||_2^2 - 1$

-
-
-
-
-
-
- -
-
-
-
-
-
-
-

• Previous bounds are lossy in **polylog(d, m)** factors

- Previous bounds are lossy in **polylog(d, m)** factors
- Our main technical work

- Previous bounds are lossy in **polylog(d, m)** factors
- Our main technical work
	- are **tight up to an absolute constant**

- Previous bounds are lossy in **polylog(d, m)** factors
- Our main technical work
	- are **tight up to an absolute constant**
	- Therefore, we are able to improve previous bounds

- Previous bounds are lossy in **polylog(d, m)** factors
- Our main technical work
	- are **tight up to an absolute constant**
	- Therefore, we are able to improve previous bounds

$$
m = O(\frac{d^2}{polylog(d)})
$$

- Previous bounds are lossy in **polylog(d, m)** factors
- Our main technical work
	- are **tight up to an absolute constant**
	- Therefore, we are able to improve previous bounds

$$
m = O(\frac{d^2}{polylog(d)})
$$

- Previous bounds are lossy in **polylog(d, m)** factors
- Our main technical work
	- are **tight up to an absolute constant**
	- Therefore, we are able to improve previous bounds

$$
m = O(\frac{d^2}{polylog(d)})
$$

-
-
-
-
-
- - -

• High-level strategy from previous works

- High-level strategy from previous works
- where the expectation is taken over the underlying random input

- High-level strategy from previous works
- where the expectation is taken over the underlying random input
- Higher-moments to get a w.h.p. bound

- High-level strategy from previous works
- where the expectation is taken over the underlying random input
- Higher-moments to get a w.h.p. bound
- Applying for A_1 :

- High-level strategy from previous works
- where the expectation is taken over the underlying random input
- Higher-moments to get a w.h.p. bound
- Applying for A_1 :

 $\mathbb{E}[\|A_1\|_{sp}^{2q}] \leq \mathbb{E}[(A_1A_1^T)^q] = \mathbb{E}$ *S*

∑ 1, *T*1, *S*2, *T*2,…*Sq*−1, *Tq*−1∈[*m*[$A_1[S_1, T_1]A_1^T[T_1, S_2] \cdots A_1^T[T_{q-1}, S_1]$

- High-level strategy from previous works
- where the expectation is taken over the underlying random input
- Higher-moments to get a w.h.p. bound
- Applying for A_1 :

∑ 1, *T*1, *S*2, *T*2,…*Sq*−1, *Tq*−1∈[*m*[$A_1[S_1, T_1]A_1^T[T_1, S_2] \cdots A_1^T[T_{q-1}, S_1]$

$$
\mathbb{E}[\|A_1\|_{sp}^{2q}] \le \mathbb{E}[(A_1A_1^T)^q] = \mathbb{E} \left[S_1, T_1, S_2, T_2, \right]
$$

where the expectation is taken over input $\set{\mathcal{V}_i}$

Overview

- 1. Ellipsoid Fitting Conjecture
- 2. Constructing an Ellipsoid
- 3. Analysis via Graph Matrices
- **4. A Local Machinery for Tight Norm Bounds**

• Crucial idea for trace-moment method:

- Crucial idea for trace-moment method:
	-

• each edge is independent -> the expectation **factorizes** over edges;

- Crucial idea for trace-moment method:
	- each edge is independent -> the expectation **factorizes** over edges;
	- each edge corresponds to a mean-0 r.v. -> it needs to appear at least **twice** in the walk (o.w. the expectation vanishes).

- Crucial idea for trace-moment method:
	- each edge is independent -> the expectation **factorizes** over edges;
	- each edge corresponds to a mean-0 r.v. -> it needs to appear at least **twice** in the walk (o.w. the expectation vanishes).
- Sufficient to get a rough norm bound (that loses polylog factors)

- Crucial idea for trace-moment method:
	- each edge is independent -> the expectation **factorizes** over edges;
	- each edge corresponds to a mean-0 r.v. -> it needs to appear at least **twice** in the walk (o.w. the expectation vanishes).
- Sufficient to get a rough norm bound (that loses polylog factors)
- We give a more fine-grained analysis to control the lower-order factors

- Crucial idea for trace-moment method:
	- each edge is independent -> the expectation **factorizes** over edges;
	- each edge corresponds to a mean-0 r.v. -> it needs to appear at least **twice** in the walk (o.w. the expectation vanishes).
- Sufficient to get a rough norm bound (that loses polylog factors)
- We give a more fine-grained analysis to control the lower-order factors
	- This is a walk of 2q-steps, we bound the "contribution" from each step

- Crucial idea for trace-moment method:
	- each edge is independent -> the expectation **factorizes** over edges;
	- each edge corresponds to a mean-0 r.v. -> it needs to appear at least **twice** in the walk (o.w. the expectation vanishes).
- Sufficient to get a rough norm bound (that loses polylog factors)
- We give a more fine-grained analysis to control the lower-order factors
	- This is a walk of 2q-steps, we bound the "contribution" from each step
	- **• Warning: each step may contain multiple edges**

• Each edge (random variable)'s appearance in the walk may be,

- Each edge (random variable)'s appearance in the walk may be,
	- **F** (forward): uses a new edge, and arrive at a new vertex

- Each edge (random variable)'s appearance in the walk may be,
	- **F** (forward): uses a new edge, and arrive at a new vertex
	- **S** (surprise): uses a new edge, and arrive at a "seen" vertex

- Each edge (random variable)'s appearance in the walk may be,
	- **F** (forward): uses a new edge, and arrive at a new vertex
	- **S** (surprise): uses a new edge, and arrive at a "seen" vertex
	- **H** (middle): uses an edge that is making middle appearance (neither first/last)

- Each edge (random variable)'s appearance in the walk may be,
	- **F** (forward): uses a new edge, and arrive at a new vertex
	- **S** (surprise): uses a new edge, and arrive at a "seen" vertex
	- **H** (middle): uses an edge that is making middle appearance (neither first/last)
	- **R** (return): uses an edge for the last time

- Each edge (random variable)'s appearance in the walk may be,
	- **F** (forward): uses a new edge, and arrive at a new vertex
	- **S** (surprise): uses a new edge, and arrive at a "seen" vertex
	- **H** (middle): uses an edge that is making middle appearance (neither first/last)
	- **R** (return): uses an edge for the last time
- Each edge gives two types of contributions

- Each edge (random variable)'s appearance in the walk may be,
	- **F** (forward): uses a new edge, and arrive at a new vertex
	- **S** (surprise): uses a new edge, and arrive at a "seen" vertex
	- **H** (middle): uses an edge that is making middle appearance (neither first/last)
	- **R** (return): uses an edge for the last time
- Each edge gives two types of contributions
	- **Vertex-factor** (of the vertex it leads to): the combinatorial choice from counting

- Each edge (random variable)'s appearance in the walk may be,
	- **F** (forward): uses a new edge, and arrive at a new vertex
	- **S** (surprise): uses a new edge, and arrive at a "seen" vertex
	- **H** (middle): uses an edge that is making middle appearance (neither first/last)
	- **R** (return): uses an edge for the last time
- Each edge gives two types of contributions
	- **Vertex-factor** (of the vertex it leads to): the combinatorial choice from counting
	- **Edge-factor**: the analytical factor from expectation of the random variable
• Assignment of **edge-factor**: for each random variable x,

• Assignment of **edge-factor**: for each random variable x,

Assign a factor of $\frac{1}{\sqrt{d}}$ for first (F) and last (R) appearance each; 1 *d*

• Assignment of **edge-factor**: for each random variable x,

Assign a factor of $\frac{1}{\sqrt{d}}$ for first (F) and last (R) appearance each; 1 *d*

• if appears exactly twice, gives **v**

value
$$
E[x^2] = \frac{1}{d}
$$
;

• Assignment of **edge-factor**: for each random variable x,

Assign a factor of $\frac{1}{\sqrt{d}}$ for first (F) and last (R) appearance each; 1 *d*

- if appears exactly twice, gives **value E**
- If appears $t > 2$ times, gives a

value
$$
E[x^2] = \frac{1}{d}
$$
;

value at most
$$
E[x^t] \le \frac{t^{t/2}}{d^{t/2}}
$$
;

• Assignment of **edge-factor**: for each random variable x,

Assign a factor of $\frac{1}{\sqrt{d}}$ for first (F) and last (R) appearance each; 1 *d*

- if appears exactly twice, gives **value E**
- If appears $t > 2$ times, gives a

value
$$
E[x^2] = \frac{1}{d}
$$
;

value at most
$$
E[x^t] \le \frac{t^{t/2}}{d^{t/2}}
$$
;

each middle (non first/last) appearance.

. Assign a factor of
$$
\frac{\sqrt{t}}{\sqrt{d}} \le \frac{\sqrt{q}}{\sqrt{d}}
$$
 for

• Assignment of **vertex-factor**

- Assignment of **vertex-factor**
	- Each vertex, when it first appears, contributes a value of d (or m)

- Assignment of **vertex-factor**
	- Each vertex, when it first appears, contributes a value of d (or m)
	- We split the factor among its first and last appearance

- Assignment of **vertex-factor**
	- Each vertex, when it first appears, contributes a value of d (or m)
	- We split the factor among its first and last appearance
		- That is a factor of \sqrt{d} (or \sqrt{m})

- Assignment of **vertex-factor**
	- Each vertex, when it first appears, contributes a value of d (or m)
	- We split the factor among its first and last appearance
		- That is a factor of \sqrt{d} (or \sqrt{m})
	- (Main lemma) For any vertex's subsequent appearance,

- Assignment of **vertex-factor**
	- Each vertex, when it first appears, contributes a value of d (or m)
	- We split the factor among its first and last appearance
		- That is a factor of \sqrt{d} (or \sqrt{m})
	- (Main lemma) For any vertex's subsequent appearance,

- If it is arrived via an H/S-edge, a cost of q^3 su
- If it is arrived via an R-edge, a cost of 1 suffices.

- Assignment of **vertex-factor**
	- Each vertex, when it first appears, contributes a value of d (or m)
	- We split the factor among its first and last appearance
		- That is a factor of \sqrt{d} (or \sqrt{m})
	- (Main lemma) For any vertex's subsequent appearance,

- If it is arrived via an H/S-edge, a cost of q^3 su
- If it is arrived via an R-edge, a cost of 1 suffices.

- Assignment of **vertex-factor**
	- Each vertex, when it first appears, contributes a value of d (or m)
	- We split the factor among its first and last appearance
		- That is a factor of \sqrt{d} (or \sqrt{m})
	- (Main lemma) For any vertex's subsequent appearance,

- If it is arrived via an H/S-edge, a cost of q^3 su
- If it is arrived via an R-edge, a cost of 1 suffices.
- **Similar lemmas were known before for G.O.E. and adjacency matrix only**

• Assume the walk is tree-like (no **S** edge), and there is also no **H** edge

- Assume the walk is tree-like (no **S** edge), and there is also no **H** edge
	- Each time we are at a vertex, it is incident to only **1 F** edge

- Assume the walk is tree-like (no **S** edge), and there is also no **H** edge
	- Each time we are at a vertex, it is incident to only **1 F** edge
	- Hence, we **do not** need any cost to specify where an R edge leads to.

- Assume the walk is tree-like (no **S** edge), and there is also no **H** edge
	- Each time we are at a vertex, it is incident to only **1 F** edge
	- Hence, we **do not** need any cost to specify where an R edge leads to.
- When the walk is not tree-like

- Assume the walk is tree-like (no **S** edge), and there is also no **H** edge
	- Each time we are at a vertex, it is incident to only **1 F** edge
	- Hence, we **do not** need any cost to specify where an R edge leads to.
- When the walk is not tree-like
	- Each S/H edge may incur confusion as a vertex may now be incident to multiple F edges

- Assume the walk is tree-like (no **S** edge), and there is also no **H** edge
	- Each time we are at a vertex, it is incident to only **1 F** edge
	- Hence, we **do not** need any cost to specify where an R edge leads to.
- When the walk is not tree-like
	- Each S/H edge may incur confusion as a vertex may now be incident to multiple F edges
	- Observation: each comes with a **gap** in the vertex-factor, and we can use this gap to encode auxiliary information

- Assume the walk is tree-like (no **S** edge), and there is also no **H** edge
	- Each time we are at a vertex, it is incident to only **1 F** edge
	- Hence, we **do not** need any cost to specify where an R edge leads to.
- When the walk is not tree-like
	- Each S/H edge may incur confusion as a vertex may now be incident to multiple F edges
	- Observation: each comes with a gap in the vertex-factor, and we can use this gap to encode auxiliary information
	- Gap: as opposed to going to a new vertex that gives \sqrt{d} , a label in q suffices now

- Assignment of **vertex-factor**
	- Each vertex, when it first appears, contributes a value of d (or m)
	- We split the factor among its first and last appearance
		- That is a factor of \sqrt{d} (or \sqrt{m})
	- (Main lemma) For any vertex's subsequent appearance,

- If it is arrived via an H/S-edge, a cost of q^3 su
- If it is arrived via an R-edge, a cost of 1 suffices.

- Assignment of **vertex-factor**
	- Each vertex, when it first appears, contributes a value of d (or m)
	- We split the factor among its first and last appearance
		- That is a factor of \sqrt{d} (or \sqrt{m})
	- (Main lemma) For any vertex's subsequent appearance,

• Each vertex on the vertex boundary appears in both steps

- If it is arrived via an H/S-edge, a cost of q^3 su
- If it is arrived via an R-edge, a cost of 1 suffices.

F/S/R: $1/\sqrt{d}$

H: \overline{q} / \sqrt{d}

Edge-factors

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

a can be making "last" appearance, but not "first", hence \sqrt{m}

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a can be making "last" appearance, but not "first", hence \sqrt{m}
- i is making "middle" appearance, hence no factor

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a can be making "last" appearance, but not "first", hence \sqrt{m}
- i is making "middle" appearance, hence no factor
- j is making "middle" appearance, hence no factor

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a can be making "last" appearance, but not "first", hence \sqrt{m}
- i is making "middle" appearance, hence no factor
- j is making "middle" appearance, hence no factor

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

Arrival via S/H:

Why middle?

- a can be making "last" appearance, but not "first", hence \sqrt{m}
- i is making "middle" appearance, hence no factor
- j is making "middle" appearance, hence no factor

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

Arrival via S/H:

Why middle?

- a can be making "last" appearance, but not "first", hence \sqrt{m}
- i is making "middle" appearance, hence no factor
- j is making "middle" appearance, hence no factor
- b is making "first" appearance, but not "last", hence \sqrt{m}

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

Arrival via S/H:

Why middle?

- a can be making "last" appearance, but not "first", hence \sqrt{m}
- i is making "middle" appearance, hence no factor
- j is making "middle" appearance, hence no factor
- b is making "first" appearance, but not "last", hence \sqrt{m}
- Edge-value $1/d^2$

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

Arrival via S/H:

Why middle?

- a can be making "last" appearance, but not "first", hence \sqrt{m}
- i is making "middle" appearance, hence no factor
- j is making "middle" appearance, hence no factor
- b is making "first" appearance, but not "last", hence \sqrt{m}
- Edge-value $1/d^2$

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

Arrival via S/H: *q*3

- a can be making "last" appearance, but not "first", hence \sqrt{m}
- i is making "middle" appearance, hence no factor
- j is making "middle" appearance, hence no factor
- b is making "first" appearance, but not "last", hence \sqrt{m}
- Edge-value $1/d^2$

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

Arrival via S/H: *q*3

F/S/R: $1/\sqrt{d}$

H: \overline{q} / \sqrt{d}

Edge-factors

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

a is making "middle" appearance, hence no factor

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a is making "middle" appearance, hence no factor
- i is making "first" appearance, but not "last", hence \sqrt{d}

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a is making "middle" appearance, hence no factor
- i is making "first" appearance, but not "last", hence \sqrt{d}
- j is making "first" appearance, but not "last", hence \sqrt{d}

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a is making "middle" appearance, hence no factor
- i is making "first" appearance, but not "last", hence \sqrt{d}
- j is making "first" appearance, but not "last", hence \sqrt{d}
- b is making "first" appearance, but not "last", hence \sqrt{m}

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a is making "middle" appearance, hence no factor
- i is making "first" appearance, but not "last", hence \sqrt{d}
- j is making "first" appearance, but not "last", hence \sqrt{d}
- b is making "first" appearance, but not "last", hence \sqrt{m}
- Edge-value 1/*d*²

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a is making "middle" appearance, hence no factor
- i is making "first" appearance, but not "last", hence \sqrt{d}
- j is making "first" appearance, but not "last", hence \sqrt{d}
- b is making "first" appearance, but not "last", hence \sqrt{m}
- Edge-value 1/*d*²

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a is making "middle" appearance, hence no factor
- i is making "first" appearance, but not "last", hence \sqrt{d}
- j is making "first" appearance, but not "last", hence \sqrt{d}
- b is making "first" appearance, but not "last", hence \sqrt{m}
- Edge-value 1/*d*²

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a is making "middle" appearance, hence no factor
- i is making "first" appearance, but not "last", hence \sqrt{d}
- j is making "first" appearance, but not "last", hence \sqrt{d}
- b is making "first" appearance, but not "last", hence \sqrt{m}
- Edge-value 1/*d*²

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

Arrival via S/H: *q*3

 $\sqrt{m}d/d^2 \leq \sqrt{c}$

Dominant term!

F/S/R: $1/\sqrt{d}$

H: \overline{q} / \sqrt{d}

Edge-factors

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

a is making "middle" appearance, hence no factor

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a is making "middle" appearance, hence no factor
- i is making "last" appearance, but not "first", hence \sqrt{d}

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a is making "middle" appearance, hence no factor
- i is making "last" appearance, but not "first", hence \sqrt{d}
- j is making "last" appearance, but not "first", hence \sqrt{d}

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a is making "middle" appearance, hence no factor
- i is making "last" appearance, but not "first", hence \sqrt{d}
- j is making "last" appearance, but not "first", hence \sqrt{d}
- b is making "last" appearance, but not "first", hence \sqrt{m}

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a is making "middle" appearance, hence no factor
- i is making "last" appearance, but not "first", hence \sqrt{d}
- j is making "last" appearance, but not "first", hence \sqrt{d}
- b is making "last" appearance, but not "first", hence \sqrt{m}
- Edge-value 1/*d*²

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a is making "middle" appearance, hence no factor
- i is making "last" appearance, but not "first", hence \sqrt{d}
- j is making "last" appearance, but not "first", hence \sqrt{d}
- b is making "last" appearance, but not "first", hence \sqrt{m}
- Edge-value 1/*d*²

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a is making "middle" appearance, hence no factor
- i is making "last" appearance, but not "first", hence \sqrt{d}
- j is making "last" appearance, but not "first", hence \sqrt{d}
- b is making "last" appearance, but not "first", hence \sqrt{m}
- Edge-value 1/*d*²

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a is making "middle" appearance, hence no factor
- i is making "last" appearance, but not "first", hence \sqrt{d}
- j is making "last" appearance, but not "first", hence \sqrt{d}
- b is making "last" appearance, but not "first", hence \sqrt{m}
- Edge-value 1/*d*²

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

Arrival via S/H: *q*3

 $\sqrt{m}d/d^2 \leq \sqrt{c}$

Dominant term!

F/S/R: $1/\sqrt{d}$

H: \overline{q} / \sqrt{d}

Edge-factors

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

a is making "middle" appearance, hence no factor

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a is making "middle" appearance, hence no factor
- i is not "first" nor "last", yet it is arrived using S, hence q^3

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a is making "middle" appearance, hence no factor
- i is not "first" nor "last", yet it is arrived using S, hence q^3
- j is making "middle" appearance, hence \sqrt{d}

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a is making "middle" appearance, hence no factor
- i is not "first" nor "last", yet it is arrived using S, hence q^3
- j is making "middle" appearance, hence \sqrt{d}
- b is making "first" appearance, but not "last", hence \sqrt{m}

F/S/R: $1/\sqrt{d}$

H: \overline{q} / \sqrt{d}

Edge-factors

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a is making "middle" appearance, hence no factor
- i is not "first" nor "last", yet it is arrived using S, hence q^3
- j is making "middle" appearance, hence \sqrt{d}
- b is making "first" appearance, but not "last", hence \sqrt{m}
- Edge-value $1/d^2$

F/S/R: $1/\sqrt{d}$

H: \overline{q} / \sqrt{d}

Edge-factors

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- a is making "middle" appearance, hence no factor
- i is not "first" nor "last", yet it is arrived using S, hence q^3
- j is making "middle" appearance, hence \sqrt{d}
- b is making "first" appearance, but not "last", hence \sqrt{m}
- Edge-value $1/d^2$

H: \overline{q} / \sqrt{d}

Edge-factors

Vertex-factors

F/S/R: $1/\sqrt{d}$ **First/Last:** \sqrt{d} (or \sqrt{m})

- a is making "middle" appearance, hence no factor
- i is not "first" nor "last", yet it is arrived using S, hence q^3
- j is making "middle" appearance, hence \sqrt{d}
- b is making "first" appearance, but not "last", hence \sqrt{m}
- Edge-value $1/d^2$

H: \overline{q} / \sqrt{d}

Edge-factors

F/S/R: $1/\surd d$

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

A Taste of Our Local Analysis Edge-factors

F/S/R: $1/\sqrt{d}$

 \overline{q} / \sqrt{d}

H:

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

A Taste of Our Local Analysis Edge-factors

F/S/R: $1/\sqrt{d}$

 \overline{q} / \sqrt{d}

H:

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

Edge-factors F/S/R: $1/\surd d$

 \overline{q} / \sqrt{d}

• Norm bounds in 2-steps

H:

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- Norm bounds in 2-steps
	- Bound the local-value of each edge-labeling

Edge-factors F/S/R: $1/\surd d$ **H:** \overline{q} / \sqrt{d}

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- Norm bounds in 2-steps
	- Bound the local-value of each edge-labeling
	- And then sum over all F/R/S/H-edge-labeling of a given shape

Edge-factors F/S/R: $1/\surd d$ **H:** \overline{q} / \sqrt{d}

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- Norm bounds in 2-steps
	- Bound the local-value of each edge-labeling
	- And then sum over all F/R/S/H-edge-labeling of a given shape
- Summing over 4^4 -edge labelings gives a bound of $O(\surd c)$ for . $O(\sqrt{c})$ for A^{-1}

Edge-factors F/S/R: $1/\surd d$ **H:** \overline{q} / \sqrt{d}

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

Edge-factors F/S/R: $1/\surd d$ **H:** \overline{q} / \sqrt{d}

- Norm bounds in 2-steps
	- Bound the local-value of each edge-labeling
	- And then sum over all F/R/S/H-edge-labeling of a given shape
- Summing over 4^4 -edge labelings gives a bound of $O(\surd c)$ for . $O(\sqrt{c})$ for A^{-1}
- **Exponentially** many more matrices that come up —> develop a **systematic** analysis

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

- Norm bounds in 2-steps
	- Bound the local-value of each edge-labeling
	- And then sum over all F/R/S/H-edge-labeling of a given shape
- Summing over 4^4 -edge labelings gives a bound of $O(\surd c)$ for . $O(\sqrt{c})$ for A^{-1}
- **Exponentially** many more matrices that come up —> develop a **systematic** analysis

Edge-factors F/S/R: $1/\sqrt{d}$ **First/Last:** \sqrt{d} (or \sqrt{m}) H: \sqrt{q}/\sqrt{d} Arrival via S/H: q^3

Vertex-factors

- Norm bounds in 2-steps
	- Bound the local-value of each edge-labeling
	- And then sum over all F/R/S/H-edge-labeling of a given shape
- Summing over 4^4 -edge labelings gives a bound of $O(\surd c)$ for . $O(\sqrt{c})$ for A^{-1}
- **Exponentially** many more matrices that come up —> develop a **systematic** analysis

Edge-factors F/S/R: $1/\surd d$ **H:** \overline{q} / \sqrt{d}

Vertex-factors

First/Last: \sqrt{d} (or \sqrt{m})

Wrapping up

- 1. Ellipsoid Fitting Conjecture
- 2. Constructing an Ellipsoid
- 3. Analysis via Graph Matrices
- **4. A Local Machinery for Tight Norm Bounds**

Thank you!

, *d*

- Our construction experimentally fails [PTVW '22]
- **(Negative)** If $m \geq (1 + \epsilon)$, there does not exist such an ellipsoid w.h.p. d^2 4

Open Question [SCPW Conjecture] For all $\epsilon > 0$, and for sufficiently large

there exists such an ellipsoid w.h.p.

• (Positive) If
$$
m \leq (1 - \epsilon) \frac{d^2}{4}
$$
, t
References

[GJJ+20] Mrinalkanti Ghosh, Fernando Granha Jeronimo, Chris Jones, Aaron Potechin, and Goutham Rajendran. *Sum-of-squares lower bounds for Sherrington-Kirkpatrick via planted affine planes.*

[KD22] Daniel M Kane and Ilias Diakonikolas. *A Nearly Tight Bound for Fitting an Ellipsoid to Gaussian Random Points*. arXiv preprint arXiv:2212.11221, 2022.

[PTVW22] Aaron Potechin, Paxton Turner, Prayaag Venkat, and Alexander S Wein. *Near-optimal fitting of ellipsoids to random points*. arXiv preprint arXiv:2208.09493, 2022.

[SCPW12] James Saunderson, Venkat Chandrasekaran, Pablo A Parrilo, and Alan S Willsky. Diagonal and low-rank matrix decompositions, correlation matrices, and ellipsoid fitting. SIAM Journal on Matrix Analysis and Applications, 33(4):1395–1416, 2012.

[SPW13] James Saunderson, Pablo A Parrilo, and Alan S Willsky. Diagonal and low-rank decompositions and fitting ellipsoids to random points. In 52nd IEEE Conference on Decision and Control, pages 6031–6036. IEEE, 2013.