
Efficient Algorithms for Semirandom
Planted CSPs at the Refutation Threshold

Joint work with

Jun-Ting (Tim) Hsieh, CMU

Pravesh K. Kothari
CMU

Venkat Guruswami
UC Berkeley

Peter Manohar
CMU

3-SAT

2

ψ = (x1 ∨ x2 ∨ x5) ∧ (x2 ∨ x4 ∨ x6) ∧ ⋯

3-SAT

NP-hard to satisfy fraction of the clauses [Hastad’01].
7
8

+ ϵ

2

ψ = (x1 ∨ x2 ∨ x5) ∧ (x2 ∨ x4 ∨ x6) ∧ ⋯

3-SAT

NP-hard to satisfy fraction of the clauses [Hastad’01].
7
8

+ ϵ

Under ETH: hard even for dense instances (clauses) [Fotakis-Lampis-Paschos’16].o(n3)

2

Number of constraints
O(n) O(n3)

Hard PTAS

ψ = (x1 ∨ x2 ∨ x5) ∧ (x2 ∨ x4 ∨ x6) ∧ ⋯

3-SAT

NP-hard to satisfy fraction of the clauses [Hastad’01].
7
8

+ ϵ

Under ETH: hard even for dense instances (clauses) [Fotakis-Lampis-Paschos’16].o(n3)

2

Number of constraints
O(n) O(n3)

Hard PTAS

Worst-case setting.

ψ = (x1 ∨ x2 ∨ x5) ∧ (x2 ∨ x4 ∨ x6) ∧ ⋯

Random 3-SAT

3

Random 3-SAT
Random 3-SAT instance: for each clause,

3

Random 3-SAT
Random 3-SAT instance: for each clause,

Random 3-tuple,

3

(1, 2, 5) (2, 4, 6)

Random 3-SAT
Random 3-SAT instance: for each clause,

Random 3-tuple,

Random literal patterns.

3

(1, 2, 5) (2, 4, 6)

(x1 ∨ x2 ∨ x5) (x2 ∨ x4 ∨ x6)

Random 3-SAT
Random 3-SAT instance: for each clause,

Random 3-tuple,

Random literal patterns.

Can we find a good approximate solution?

3

(1, 2, 5) (2, 4, 6)

(x1 ∨ x2 ∨ x5) (x2 ∨ x4 ∨ x6)

Random 3-SAT
Random 3-SAT instance: for each clause,

Random 3-tuple,

Random literal patterns.

Can we find a good approximate solution?

Fact: All assignments satisfy fraction of the clauses.
7
8

± o(1)

3

(1, 2, 5) (2, 4, 6)

(x1 ∨ x2 ∨ x5) (x2 ∨ x4 ∨ x6)

Random 3-SAT refutation

4

Random 3-SAT refutation
Refutation: given a random instance, certify that it is unsatisfiable.

4

Random 3-SAT refutation
Refutation: given a random instance, certify that it is unsatisfiable.

There is poly-time algorithm when clauses [Coja-Oghlan-Goerdt-Lanka’07].m = O(n3/2)

4

Random 3-SAT refutation
Refutation: given a random instance, certify that it is unsatisfiable.

There is poly-time algorithm when clauses [Coja-Oghlan-Goerdt-Lanka’07].m = O(n3/2)

4

Number of constraints
O(n) n3

Hard Poly-time

n3/2

Random -CSP refutationk
Refutation: given a random instance, certify that it is unsatisfiable.

There is poly-time algorithm when clauses [Coja-Oghlan-Goerdt-Lanka’07, Allen-
O’Donnel-Witmer’15].

m = O(nk/2)

5

Number of constraints
O(n) nk

Hard Poly-time

nk/2

Random -CSP refutationk
Refutation: given a random instance, certify that it is unsatisfiable.

There is poly-time algorithm when clauses [Coja-Oghlan-Goerdt-Lanka’07, Allen-
O’Donnel-Witmer’15].

m = O(nk/2)

5

Number of constraints
O(n) nk

Hard Poly-time

nk/2

Hardness evidence
[BCK’15, KMOW’17]

Random -CSP refutationk
Refutation: given a random instance, certify that it is unsatisfiable.

There is poly-time algorithm when clauses [Coja-Oghlan-Goerdt-Lanka’07, Allen-
O’Donnel-Witmer’15].

m = O(nk/2)

5

Number of constraints
O(n) nk

Hard Poly-time

nk/2

Hardness evidence
[BCK’15, KMOW’17]

Refutation threshold.

Random -CSPsk

6

Random -CSPsk
Search: the instance is randomly generated with a satisfying planted assignment .x*

6

Random -CSPsk
Search: the instance is randomly generated with a satisfying planted assignment .x*

Goal: find .x*

6

Random -CSPsk
Search: the instance is randomly generated with a satisfying planted assignment .x*

Goal: find .x*

There is a poly-time algorithm when clauses [Feldman-Perkins-Vempala’15].m = O(nk/2)

6

Number of constraints
O(n) nk

Hard Poly-time

nk/2

Random -CSPsk
Search: the instance is randomly generated with a satisfying planted assignment .x*

Goal: find .x*

There is a poly-time algorithm when clauses [Feldman-Perkins-Vempala’15].m = O(nk/2)

6

Number of constraints
O(n) nk

Hard Poly-time

nk/2

Same as the refutation threshold!

Semirandom models
Question: Do these algorithms rely too heavily on the specific random models?

7

Semirandom models
Question: Do these algorithms rely too heavily on the specific random models?

Yes — most known algorithms break down under minor perturbations.

7

Semirandom models
Question: Do these algorithms rely too heavily on the specific random models?

Yes — most known algorithms break down under minor perturbations.

Semirandom models: instances constructed from both average-case and adversarial
worst-case choices [Blum-Spencer’95, Feige-Kilian’01].

7

Semirandom models
Question: Do these algorithms rely too heavily on the specific random models?

Yes — most known algorithms break down under minor perturbations.

Semirandom models: instances constructed from both average-case and adversarial
worst-case choices [Blum-Spencer’95, Feige-Kilian’01].

Algorithms that succeed are more “robust”.

7

Semirandom models
Question: Do these algorithms rely too heavily on the specific random models?

Yes — most known algorithms break down under minor perturbations.

Semirandom models: instances constructed from both average-case and adversarial
worst-case choices [Blum-Spencer’95, Feige-Kilian’01].

Algorithms that succeed are more “robust”.

Understand which “randomness” is unnecessary.

7

Semirandom CSPs

8

Semirandom CSPs
Worst-case clause structure (hypergraph).

8

(1, 2, 5) (2, 4, 6)

Semirandom CSPs
Worst-case clause structure (hypergraph).

Random literal patterns.

8

(1, 2, 5) (2, 4, 6)

(x1 ∨ x2 ∨ x5) (x2 ∨ x4 ∨ x6)

Semirandom CSPs
Worst-case clause structure (hypergraph).

Random literal patterns.

8

(1, 2, 5) (2, 4, 6)

(x1 ∨ x2 ∨ x5) (x2 ∨ x4 ∨ x6)

(Fully) random = semirandom +
random hypergraph

Semirandom CSPs
Worst-case clause structure (hypergraph).

Random literal patterns.

Refutation: same threshold as fully random [Abascal-Guruswami-Kothari’21, Guruswami-
Kothari-Manohar’22, Hsieh-Kothari-Mohanty’22].

8

Number of constraints
O(n) nk

Hard Poly-time

Õ(nk/2)

(1, 2, 5) (2, 4, 6)

(x1 ∨ x2 ∨ x5) (x2 ∨ x4 ∨ x6)

(Fully) random = semirandom +
random hypergraph

Semirandom CSPs
Worst-case clause structure (hypergraph).

Random literal patterns.

Refutation: same threshold as fully random [Abascal-Guruswami-Kothari’21, Guruswami-
Kothari-Manohar’22, Hsieh-Kothari-Mohanty’22].

Search (planted): ?

8

Number of constraints
O(n) nk

Hard Poly-time

Õ(nk/2)

(1, 2, 5) (2, 4, 6)

(x1 ∨ x2 ∨ x5) (x2 ∨ x4 ∨ x6)

(Fully) random = semirandom +
random hypergraph

Our results

9

Our results
Theorem 1. Given a semirandom planted -CSP with constraints, our
algorithm outputs an that satisfies fraction of the clauses.

k m ≥ Õ(nk/2)
x 1 − o(1)

9

Number of constraints
O(n) nk

Hard Poly-time

Õ(nk/2)

Our results
Theorem 1. Given a semirandom planted -CSP with constraints, our
algorithm outputs an that satisfies fraction of the clauses.

k m ≥ Õ(nk/2)
x 1 − o(1)

9

Number of constraints
O(n) nk

Hard Poly-time

Õ(nk/2)

Same as the refutation threshold!

Our results
Theorem 1. Given a semirandom planted -CSP with constraints, our
algorithm outputs an that satisfies fraction of the clauses.

Our algorithm goes through a reduction to noisy planted -XOR.

k m ≥ Õ(nk/2)
x 1 − o(1)

k

10

Our results
Theorem 1. Given a semirandom planted -CSP with constraints, our
algorithm outputs an that satisfies fraction of the clauses.

Our algorithm goes through a reduction to noisy planted -XOR.

k m ≥ Õ(nk/2)
x 1 − o(1)

k

10

Fourier analysis.

Noisy planted -XORk
Instance:

11

Noisy planted -XORk
Instance:

Arbitrary -uniform hypergraph .k G

11

Noisy planted -XORk
Instance:

Arbitrary -uniform hypergraph .k G

Arbitrary .x* ∈ {±1}n

11

Noisy planted -XORk
Instance:

Arbitrary -uniform hypergraph .k G

Arbitrary .x* ∈ {±1}n

For each , add a constraint .C ∈ G ∏
i∈C

xi = bC := ∏
i∈C

x*i

11

Noisy planted -XORk
Instance:

Arbitrary -uniform hypergraph .k G

Arbitrary .x* ∈ {±1}n

For each , add a constraint .C ∈ G ∏
i∈C

xi = bC := ∏
i∈C

x*i

Flip the sign of each with probability .bC C ∈ G η < 1/2

11

Noisy planted -XORk
The maximum info about that we can retrieve is if we knew all the corrupted
constraints.

x*

12

Noisy planted -XORk
The maximum info about that we can retrieve is if we knew all the corrupted
constraints.

x*

Ideal Goal: identify all corrupted constraints.

12

Noisy planted -XORk
The maximum info about that we can retrieve is if we knew all the corrupted
constraints.

x*

Ideal Goal: identify all corrupted constraints.

Worst-case hypergraph: not possible.

12

Noisy planted -XORk
The maximum info about that we can retrieve is if we knew all the corrupted
constraints.

x*

Ideal Goal: identify all corrupted constraints.

Worst-case hypergraph: not possible.

12

Our result: we identify almost all corrupted constraints.

Our results
Theorem 2. Given a noisy -XOR instance with constraints, our algorithm
outputs:

k m ≥ Õ(nk/2)

13

Our results
Theorem 2. Given a noisy -XOR instance with constraints, our algorithm
outputs:

k m ≥ Õ(nk/2)

Discarded edges: where and depends only on ,A1 ⊆ G |A1 | ≤ o(m) A1 G

13

Our results
Theorem 2. Given a noisy -XOR instance with constraints, our algorithm
outputs:

k m ≥ Õ(nk/2)

Discarded edges: where and depends only on ,A1 ⊆ G |A1 | ≤ o(m) A1 G

Corrupted edges: where .A2 ⊆ G A2 = (corrupted edges) ∩ (G∖A1)

13

Our results
Theorem 2. Given a noisy -XOR instance with constraints, our algorithm
outputs:

k m ≥ Õ(nk/2)

Discarded edges: where and depends only on ,A1 ⊆ G |A1 | ≤ o(m) A1 G

Corrupted edges: where .A2 ⊆ G A2 = (corrupted edges) ∩ (G∖A1)

13

Except for , we identify exactly all corrupted constraints!A1

Our results
Theorem 2. Given a noisy -XOR instance with constraints, our algorithm
outputs:

k m ≥ Õ(nk/2)

Discarded edges: where and depends only on ,A1 ⊆ G |A1 | ≤ o(m) A1 G

Corrupted edges: where .A2 ⊆ G A2 = (corrupted edges) ∩ (G∖A1)

13

Except for , we identify exactly all corrupted constraints!A1

This stronger guarantee is necessary for
the reduction from semirandom -CSPs to noisy -XOR. k k

Key ideas

14

Key ideas
Determine the minimal condition on the constraint graph that makes SDP uniquely
identify .

G
x*

14

Key ideas
Determine the minimal condition on the constraint graph that makes SDP uniquely
identify .

G
x*

A new connection to spectral sparsification.

14

Key ideas
Determine the minimal condition on the constraint graph that makes SDP uniquely
identify .

G
x*

A new connection to spectral sparsification.

Decomposition that breaks up every instance into pieces satisfying the above condition.

14

Proof Idea:

Noisy 2-XOR

Noisy 2-XOR

16

Noisy 2-XOR
Arbitrary graph and , constraints w.p. and
w.p. for each edge .

G x* ∈ {±1}n xixj = x*i x*j 1 − η xixj = − x*i x*j
η (i, j) ∈ E

16

Noisy 2-XOR
Arbitrary graph and , constraints w.p. and
w.p. for each edge .

G x* ∈ {±1}n xixj = x*i x*j 1 − η xixj = − x*i x*j
η (i, j) ∈ E

Question: when can we recover exactly (up to sign)?x*

16

Noisy 2-XOR
Arbitrary graph and , constraints w.p. and
w.p. for each edge .

G x* ∈ {±1}n xixj = x*i x*j 1 − η xixj = − x*i x*j
η (i, j) ∈ E

Question: when can we recover exactly (up to sign)?x*

Observation. Let be the corrupted edges. If for each ,H S ⊆ [n]

16

Noisy 2-XOR
Arbitrary graph and , constraints w.p. and
w.p. for each edge .

G x* ∈ {±1}n xixj = x*i x*j 1 − η xixj = − x*i x*j
η (i, j) ∈ E

Question: when can we recover exactly (up to sign)?x*

Observation. Let be the corrupted edges. If for each ,H S ⊆ [n]

|EH(S, S̄) | <
1
2

⋅ |EG(S, S̄) |

16

SS

Noisy 2-XOR
Arbitrary graph and , constraints w.p. and
w.p. for each edge .

G x* ∈ {±1}n xixj = x*i x*j 1 − η xixj = − x*i x*j
η (i, j) ∈ E

Question: when can we recover exactly (up to sign)?x*

Observation. Let be the corrupted edges. If for each ,H S ⊆ [n]

|EH(S, S̄) | <
1
2

⋅ |EG(S, S̄) |

then is the unique optimal assignment (up to sign).x*

16

SS

Noisy 2-XOR
Arbitrary graph and , constraints w.p. and
w.p. for each edge .

G x* ∈ {±1}n xixj = x*i x*j 1 − η xixj = − x*i x*j
η (i, j) ∈ E

Question: when can we recover exactly (up to sign)?x*

Observation. Let be the corrupted edges. If for each ,H S ⊆ [n]

|EH(S, S̄) | <
1
2

⋅ |EG(S, S̄) |

then is the unique optimal assignment (up to sign).x*

16

SS

S = {i : xi ≠ x*i }

Noisy 2-XOR
Arbitrary graph and , constraints w.p. and
w.p. for each edge .

Question: when can we recover exactly (up to sign)?

Observation. Let be the corrupted edges. If for each ,

then is the unique optimal assignment (up to sign).

G x* ∈ {±1}n xixj = x*i x*j 1 − η xixj = − x*i x*j
η (i, j) ∈ E

x*

H S ⊆ [n]

|EH(S, S̄) | <
1
2

⋅ |EG(S, S̄) |

x*

17

S = {i : xi ≠ x*i }

SS

Noisy 2-XOR
Arbitrary graph and , constraints w.p. and
w.p. for each edge .

Question: when can we recover exactly (up to sign)?

Observation. Let be the corrupted edges. If for each ,

then is the unique optimal assignment (up to sign).

G x* ∈ {±1}n xixj = x*i x*j 1 − η xixj = − x*i x*j
η (i, j) ∈ E

x*

H S ⊆ [n]

|EH(S, S̄) | <
1
2

⋅ |EG(S, S̄) |

x*

17

S = {i : xi ≠ x*i }

SS

Cut sparsification!

Cut sparsification
Lemma [Karger’94]. Suppose has min-cut , then is a cut sparsifier of
(w.h.p.), meaning

G ≥ ω(log n) H G

18

Cut sparsification
Lemma [Karger’94]. Suppose has min-cut , then is a cut sparsifier of
(w.h.p.), meaning

G ≥ ω(log n) H G

, for all .x⊤LHx = (1 ± o(1)) ⋅ η ⋅ x⊤LGx x ∈ {±1}n

18

Cut sparsification
Lemma [Karger’94]. Suppose has min-cut , then is a cut sparsifier of
(w.h.p.), meaning

G ≥ ω(log n) H G

, for all .x⊤LHx = (1 ± o(1)) ⋅ η ⋅ x⊤LGx x ∈ {±1}n

Here and are the Laplacian matrices.LH LG

18

Cut sparsification
Lemma [Karger’94]. Suppose has min-cut , then is a cut sparsifier of
(w.h.p.), meaning

G ≥ ω(log n) H G

, for all .x⊤LHx = (1 ± o(1)) ⋅ η ⋅ x⊤LGx x ∈ {±1}n

Here and are the Laplacian matrices.LH LG

18

Large min-cut is the unique optimum.⟹ x*

Cut sparsification
Lemma [Karger’94]. Suppose has min-cut , then is a cut sparsifier of
(w.h.p.), meaning

G ≥ ω(log n) H G

, for all .x⊤LHx = (1 ± o(1)) ⋅ η ⋅ x⊤LGx x ∈ {±1}n

Here and are the Laplacian matrices.LH LG

18

Large min-cut is the unique optimum.⟹ x*

Can we recover it efficiently?

Efficient recovery
Semidefinite program (SDP) relaxation:

19

Efficient recovery
Semidefinite program (SDP) relaxation:

max ∑
(i,j)∈E(G)

bijXij

19

Efficient recovery
Semidefinite program (SDP) relaxation:

max ∑
(i,j)∈E(G)

bijXij

.s.t. X ⪰ 0, diag(X) = I

19

Efficient recovery
Semidefinite program (SDP) relaxation:

max ∑
(i,j)∈E(G)

bijXij

.s.t. X ⪰ 0, diag(X) = I

19

Question: Does large min-cut is the optimal SDP solution?⟹ X = x*x*⊤

Efficient recovery
Semidefinite program (SDP) relaxation:

max ∑
(i,j)∈E(G)

bijXij

.s.t. X ⪰ 0, diag(X) = I

19

Question: Does large min-cut is the optimal SDP solution?⟹ X = x*x*⊤

Can solve it efficiently.

Efficient recovery
Semidefinite program (SDP) relaxation:

max ∑
(i,j)∈E(G)

bijXij

.s.t. X ⪰ 0, diag(X) = I

19

Question: Does large min-cut is the optimal SDP solution?⟹ X = x*x*⊤

No!

Efficient recovery
Semidefinite program (SDP) relaxation:

max ∑
(i,j)∈E(G)

bijXij

.s.t. X ⪰ 0, diag(X) = I

19

Question: Does large min-cut is the optimal SDP solution?⟹ X = x*x*⊤

No!

Need additional assumptions.

Spectral sparsification

20

Spectral sparsification

20

Lemma. is the unique optimal SDP solution.LH ≺
1
2

LG ⟹ X = x*x*⊤

Spectral sparsification

Lemma. Suppose has spectral gap and min-degree such that , then
is a spectral sparsifier of (w.h.p.), meaning

G λ d λd ≥ ω(log n) H
G

20

Lemma. is the unique optimal SDP solution.LH ≺
1
2

LG ⟹ X = x*x*⊤

Spectral sparsification

Lemma. Suppose has spectral gap and min-degree such that , then
is a spectral sparsifier of (w.h.p.), meaning

G λ d λd ≥ ω(log n) H
G

.LH ⪯ (1 + o(1)) ⋅ η ⋅ LG

20

Lemma. is the unique optimal SDP solution.LH ≺
1
2

LG ⟹ X = x*x*⊤

Spectral sparsification

Lemma. Suppose has spectral gap and min-degree such that , then
is a spectral sparsifier of (w.h.p.), meaning

G λ d λd ≥ ω(log n) H
G

.LH ⪯ (1 + o(1)) ⋅ η ⋅ LG

20

Large spectral gap + min degree is the unique SDP optimum.⟹ x*x*⊤

Lemma. is the unique optimal SDP solution.LH ≺
1
2

LG ⟹ X = x*x*⊤

Algorithm for noisy 2-XOR

21

Algorithm for noisy 2-XOR
Given a noisy 2-XOR instance on graph ,G

21

Algorithm for noisy 2-XOR
Given a noisy 2-XOR instance on graph ,G

Expander decomposition: discard fraction of edges.o(1)

21

Algorithm for noisy 2-XOR
Given a noisy 2-XOR instance on graph ,G

Expander decomposition: discard fraction of edges.o(1)

Run SDP on each expanding sub-instance,

21

Algorithm for noisy 2-XOR
Given a noisy 2-XOR instance on graph ,G

Expander decomposition: discard fraction of edges.o(1)

Run SDP on each expanding sub-instance,

recover and identify corrupted edges in each sub-instance.x*

21

Algorithm for noisy -XORk

22

Algorithm for noisy -XORk
For even , we can reduce to 2-XOR.k

22

Algorithm for noisy -XORk
For even , we can reduce to 2-XOR.k

For odd , we can still reduce to 2-XOR but the corruption is no longer independent for
each edge.

k

22

Algorithm for noisy -XORk
For even , we can reduce to 2-XOR.k

For odd , we can still reduce to 2-XOR but the corruption is no longer independent for
each edge.

k

 a generalized version of spectral sparsification.⟶

22

Conclusion
Main open question:

23

Conclusion
Main open question:

Sub-exponential time algorithms when constraints. m = O(nk/2−ϵ)

23

Conclusion
Main open question:

Sub-exponential time algorithms when constraints. m = O(nk/2−ϵ)

Can we do expander decomposition implicitly, i.e., round a single SDP relaxation?

23

Conclusion
Main open question:

Sub-exponential time algorithms when constraints. m = O(nk/2−ϵ)

Can we do expander decomposition implicitly, i.e., round a single SDP relaxation?

Can some log factors be removed (e.g., log factors from matrix Chernoff)?

23

Conclusion
Main open question:

Sub-exponential time algorithms when constraints. m = O(nk/2−ϵ)

Can we do expander decomposition implicitly, i.e., round a single SDP relaxation?

Can some log factors be removed (e.g., log factors from matrix Chernoff)?

23

Thank you!
https://arxiv.org/abs/2309.16897

