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Under ETH: hard even for dense instances (o(n°) clauses) [Fotakis-Lampis-Paschos’16].

Hard PTAS

Number of constraints

O(n) O(n°)

Worst-case setting.
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Random 3-SAT

Random 3-SAT instance: for each clause,
o Random 3-tuple, (1,2,5) (2, 4,6)

o Random literal patterns. (X1 VX, V Xs5) (% V X4 V Xp)

Can we find a good approximate solution?

Fact: All assignments satisfy — = o(1) fraction of the clauses.
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Random k-CSP refutation

Refutation: given a random instance, certify that it is unsatisfiable.

There is poly-time algorithm when m = O(n"’?) clauses [Coja-Oghlan-Goerdt-Lanka’07, Allen-
O’Donnel-Witmer’15].

Hardness evidence
[BCK’15, KMOW’17]

Hard Poly-time

Number of constraints
O (n) nk/2 nk

Refutation threshold.
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Random k-CSPs

Search: the instance is randomly generated with a satisfying planted assignment x*.
Goal: find x*.

There is a poly-time algorithm when m = O(n*'?) clauses [Feldman-Perkins-Vempala’15].

Hard Poly-time

Number of constraints
O (n) nk/2 nk

Same as the refutation threshold!
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Semirandom models

Question: Do these algorithms rely too heavily on the specific random models?
Yes — most known algorithms break down under minor perturbations.

Semirandom models: instances constructed from both average-case and adversarial
worst-case choices [Blum-Spencer’95, Feige-Kilian’01].

o Algorithms that succeed are more “robust”.

o Understand which “randomness” is unnecessary.
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Semirandom CSPs random hypergraph

o Worst-case clause structure (hypergraph). (1,2,5) (2, 4,6)

o Random literal patterns. (X VI VXs5) (X VXV Xe)

Refutation: same threshold as fully random [Abascal-Guruswami-Kothari’21, Guruswami-
Kothari-Manohar’22, Hsieh-Kothari-Mohanty’22].
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o Random literal patterns. (X VI VXs5) (X VXV Xe)

Refutation: same threshold as fully random [Abascal-Guruswami-Kothari’21, Guruswami-
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algorithm outputs an x that satisfies 1 — o(1) fraction of the clauses.

Our algorithm goes through a reduction to noisy planted k-XOR.
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Our results

Theorem 1. Given a semirandom planted k-CSP with m > O(nk/ %) constraints, our
algorithm outputs an x that satisfies 1 — o(1) fraction of the clauses.

Our algorithm goes through a reduction to noisy planted k-XOR.

Fourier analysis.
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Noisy planted k-XOR

Instance:
o Arbitrary k-uniform hypergraph G.
o Arbitrary x* € {£1}".

o For each C € G, add a constraint Hxl- = D = Hxl.*.
eC ieC

o Flip the sign b of each C € G with probability < 1/2.
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Noisy planted k-XOR

The maximum info about x* that we can retrieve is if we knew all the corrupted
constraints.

Ideal Goal: identify all corrupted constraints.

Worst-case hypergraph: not possible.

Our result: we identify almost all corrupted constraints.

12



Our results

Theorem 2. Given a noisy k-XOR instance with m > O(n"?) constraints, our algorithm
outputs:
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Our results

Theorem 2. Given a noisy k-XOR instance with m > O(n"?) constraints, our algorithm
outputs:

o Discarded edges: A; C G where |A, | < o(m) and A, depends only on G,

o Corrupted edges: A, C G where A, = (corrupted edges) N (G\A)).

Except for A, we identity exactly all corrupted constraints!

This stronger guarantee is necessary for
the reduction from semirandom k-CSPs to noisy k-XOR.
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Determine the minimal condition on the constraint graph G that makes SDP uniquely
identify x*.
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Key ideas

Determine the minimal condition on the constraint graph G that makes SDP uniquely
identify x*.

o A new connection to spectral sparsification.

Decomposition that breaks up every instance into pieces satisfying the above condition.
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4 )

Observation. Let H be the corrupted edges. If for each § C [n],

_ 1 _
‘EH(SaS)‘<5‘EG(S,S)‘ S ><

then x* is the unique optimal assignment (up to sign). —
S = {i:xl-;éxl.*}

)
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Noisy 2-XOR

Arbitrary graph G and x* € {£1}", constraints xx; = )cl?k)g.>I< w.p.l —nand xx; = — xl.*)s?k
w.p. 1 for each edge (i,j) € E.
Question: when can we recover x* exactly (up to sign)?
4 )
Observation. Let H be the corrupted edges. If for each § C [n], (
_ | _ _
| ER(S,5)| <7 | EG(S,5)] > >
then x* is the unique optimal assignment (up to sign). - . )

S={i:xl-;éxl.*}
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Noisy 2-XOR

Arbitrary graph G and x* € {£1}", constraints xx; = )cl?k)g.>I< w.p.l —nand xx; = — xl.*)s?k
w.p. 1 for each edge (i,j) € E.
Question: when can we recover x* exactly (up to sign)?
4 )
Observation. Let H be the corrupted edges. If for each § C [n], (
_ | _ _
| ER(S,5)] < 5 | EG(S,5)] > >
then x* is the unique optimal assignmey/'f (up to sign). - . )
S = {i:xl-;éxl.*}

Cut sparsification!
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Cut sparsification

Lemma [Karger’94]. Suppose G has min-cut > w(logn), then H is a cut sparsifier of G
(w.h.p.), meaning

X Lyx={(=xo0(l))-n-x"Lsx, forallx € {£1}".

Here L and L, are the Laplacian matrices.

Large min-cut = x* is the unique optimum.

Can we recover it efficiently?
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Efficient recovery

Semidefinite program (SDP) relaxation:

max Z b X;;
(,)€E(G)

s.t. X > 0, diag(X) = 1.

Question: Does large min-cut => X = x*x" ' is the optimal SDP solution?

Can solve it efficiently.
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Efficient recovery

Semidefinite program (SDP) relaxation:

max Z b X;;
(,)€E(G)

s.t. X > 0, diag(X) = L.

Question: Does large min-cut => X = x*x" ' is the optimal SDP solution?

No!
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Efficient recovery

Semidefinite program (SDP) relaxation:

max Z b X;;
(,)€E(G)

s.t. X > 0, diag(X) = 1.

Question: Does large min-cut => X = x*x" ' is the optimal SDP solution?

No!

Need additional assumptions.
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Lemma. L < ELG —> X = x*x | is the unique optimal SDP solution.

Lemma. Suppose G has spectral gap 4 and min-degree d such that Ad > w(logn), then H
is a spectral sparsifier of G (w.h.p.), meaning
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Spectral sparsification

Lemma. L < ELG —> X = x*x | is the unique optimal SDP solution.

Lemma. Suppose G has spectral gap 4 and min-degree d such that Ad > w(logn), then H
is a spectral sparsifier of G (w.h.p.), meaning

Ly<(+o0(1)-n-Lg

Large spectral gap + min degree = x*x" ' is the unique SDP optimum.
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Given a noisy 2-XOR instance on graph G,
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Algorithm for noisy 2-XOR

Given a noisy 2-XOR instance on graph G,

o Expander decomposition: discard o(1) fraction of edges.
o Run SDP on each expanding sub-instance,

o recover x* and identify corrupted edges in each sub-instance.
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For even k, we can reduce to 2-XOR.
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Algorithm for noisy £&-XOR

For even k, we can reduce to 2-XOR.

For odd k, we can still reduce to 2-XOR but the corruption is no longer independent for
each edge.

— a generalized version of spectral sparsification.
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