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Number of constraints
O(n) O(n3)

Hard PTAS

Worst-case setting.

ψ = (x1 ∨ x2 ∨ x5) ∧ (x2 ∨ x4 ∨ x6) ∧ ⋯
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Random 3-SAT
Random 3-SAT instance: for each clause,

Random 3-tuple,

Random literal patterns.

Can we find a good approximate solution?

Fact: All assignments satisfy  fraction of the clauses.
7
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Refutation threshold.
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Random -CSPsk
Search: the instance is randomly generated with a satisfying planted assignment .x*

Goal: find .x*

There is a poly-time algorithm when  clauses [Feldman-Perkins-Vempala’15].m = O(nk/2)

6

Number of constraints
O(n) nk

Hard Poly-time

nk/2

Same as the refutation threshold!
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Semirandom models
Question: Do these algorithms rely too heavily on the specific random models?

Yes — most known algorithms break down under minor perturbations.

Semirandom models: instances constructed from both average-case and adversarial 
worst-case choices [Blum-Spencer’95, Feige-Kilian’01].

Algorithms that succeed are more “robust”.

Understand which “randomness” is unnecessary.
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Semirandom CSPs
Worst-case clause structure (hypergraph).

Random literal patterns.

Refutation: same threshold as fully random [Abascal-Guruswami-Kothari’21, Guruswami-
Kothari-Manohar’22, Hsieh-Kothari-Mohanty’22].
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Semirandom CSPs
Worst-case clause structure (hypergraph).

Random literal patterns.

Refutation: same threshold as fully random [Abascal-Guruswami-Kothari’21, Guruswami-
Kothari-Manohar’22, Hsieh-Kothari-Mohanty’22].

Search (planted): ?
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Our results
Theorem 1. Given a semirandom planted -CSP with  constraints, our 
algorithm outputs an  that satisfies  fraction of the clauses.

Our algorithm goes through a reduction to noisy planted -XOR.

k m ≥ Õ(nk/2)
x 1 − o(1)

k

10

Fourier analysis.
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Noisy planted -XORk
Instance:

Arbitrary -uniform hypergraph .k G

Arbitrary .x* ∈ {±1}n

For each , add a constraint .C ∈ G ∏
i∈C

xi = bC := ∏
i∈C

x*i

Flip the sign  of each  with probability .bC C ∈ G η < 1/2
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outputs:

k m ≥ Õ(nk/2)

Discarded edges:  where  and  depends only on ,A1 ⊆ G |A1 | ≤ o(m) A1 G

Corrupted edges:  where .A2 ⊆ G A2 = (corrupted edges) ∩ (G∖A1)

13

Except for , we identify exactly all corrupted constraints!A1

This stronger guarantee is necessary for
the reduction from semirandom -CSPs to noisy -XOR. k k
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Key ideas
Determine the minimal condition on the constraint graph  that makes SDP uniquely 
identify .

G
x*

A new connection to spectral sparsification.

Decomposition that breaks up every instance into pieces satisfying the above condition.
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Large min-cut   is the unique optimum.⟹ x*

Can we recover it efficiently?
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Efficient recovery
Semidefinite program (SDP) relaxation:

max ∑
(i,j)∈E(G)

bijXij

.s.t. X ⪰ 0, diag(X) = I

19

Question: Does large min-cut   is the optimal SDP solution?⟹ X = x*x*⊤

No!

Need additional assumptions.
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Spectral sparsification

Lemma. Suppose  has spectral gap  and min-degree  such that , then  
is a spectral sparsifier of  (w.h.p.), meaning

G λ d λd ≥ ω(log n) H
G

.LH ⪯ (1 + o(1)) ⋅ η ⋅ LG

20

Large spectral gap + min degree   is the unique SDP optimum.⟹ x*x*⊤

Lemma.  is the unique optimal SDP solution.LH ≺
1
2

LG ⟹ X = x*x*⊤
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Algorithm for noisy 2-XOR
Given a noisy 2-XOR instance on graph ,G

Expander decomposition: discard  fraction of edges.o(1)

Run SDP on each expanding sub-instance,

recover  and identify corrupted edges in each sub-instance.x*
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Thank you!
https://arxiv.org/abs/2309.16897


