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1 Introduction

In our current digital world, everything, from computing devices to communication channels, is
represented as 0s and 1s. The “information” that these bits can present has been well studied in
the field of classical information theory. For example, we know the capacity and limits of data
compression and the rate of reliable communication over noisy channels. Recently, perhaps due to
the excitement of quantum computation, these ideas in information theory have been extended to the
quantum world, leading to the field of quantum information theory.

In this paper, we would like to introduce the quantum counterparts of some of the key ideas we
studied in the course, including the quantum entropy measure, quantum source encoding, and touch
briefly on quantum channels.

1.1 How is quantum different than classical?

Compared to the classical world, quantum mechanics has several “weird” properties that make things
much more convoluted. Thus, we first introduce some major differences between quantum and
classical information, which are the reasons that quantum information is so interesting yet harder to
analyze. Refer to Section 2 for a more detailed introduction of quantum mechanics.

Qubit. The quantum version of the classical bit is the qubit. A classical bit is either 0 or 1, while
a qubit can be superposition of 0 and 1. This means that it is both 0 and 1, and if we perform a
measurement we will get 0 and 1 with certain probabilities. Imagine that every bit in our computer
is both 0 and 1 at the same time, and if we even try to read from it, we not only get a probabilistic
answer but also collapse that qubit state!

Entanglement. Suppose we have two classical bits (stored in disks) and we separate them, they
become independent. However, for a system with multiple qubits, we can perform certain operations
to make them entangled. Entanglement means that the qubits can be related in a way that is not
possible in the classical world. For example, two qubits can be made entangled such that when we
measure them at arbitrary locations or in arbitrary order, we know for sure that the two outcomes will
be the same, which is not possible for the classical world if we think about them as, for example, two
coin flips.

No-cloning theorem. In the classical world, we can make multiple copies of the same bits. This is
not true in quantum mechanics. In quantum mechanics, the no-cloning theorem states that given an
unknown quantum state, it is impossible to create a copy of the state. Again, imagine a computer full
of qubits, and we cannot make duplicates of the same qubits.

Distinguishability. In the classical world, we can distinguish between 0 and 1 perfectly. For example,
we can easily check whether a bit is flipped or whether two strings are the same. This is also not true
in quantum mechanics. Given two arbitrary (or non-orthogonal in the vector space, which we will
formally describe in section 2) qubits, we cannot know for sure whether they are the same. Measuring
them will not give us deterministic answers, and we cannot measure them multiple times because of
the no-cloning theorem.
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1.2 Why is quantum interesting?

Quantum mechanics is itself an interesting and active field of research, and it gives rise to many
interesting applications. Here, we look at a simple example of quantum communication: superdense
coding.

Suppose Alice wants to send a random 2-bit message to Bob. Classically, the best Alice can do
is to send the 2 bits. Now, suppose Alice and Bob shares an entangled pair of qubits in the state
|ψ00〉 = 1√

2
(|00〉+ |11〉). For a message x ∈ {0, 1}2, Alice first performs certain operations on her

qubit such that the state becomes |ψx〉, which is one of the following 2-qubit states,

|ψ00〉 =
1√
2

(|00〉+ |11〉)

|ψ01〉 =
1√
2

(|01〉+ |10〉)

|ψ10〉 =
1√
2

(|00〉 − |11〉)

|ψ11〉 =
1√
2

(|01〉 − |10〉)

(1)

Then, Alice sends her qubit to Bob. Since these are 4 orthogonal states (known as the Bell states), Bob
can measure the qubits and with 100% chance determine which state they are in, which determines
the message x.

In this example, Alice transmits 2 bits of information to Bob by sending only 1 qubit (1 use of the
quantum channel), whereas in classical communication Bob needs to send 2 bits. Though one can
argue that these are not comparable, superdense coding demonstrates the potential capabilities of
quantum information that classical information does not have.

2 Prerequisites

Let’s have a quick review of the concepts and notations needed for this paper. Feel free to skip ahead,
or refer to [1] for more advanced materials.

2.1 Quantum States

The main postulate of quantum mechanics is that any isolated physical system has an associated
complex vector space (state space), and the system is completely described as a unit vector (state
vector) in the state space. The standard notation is the Dirac notation: a state vector is denoted as
|ψ〉, its complex conjugate |ψ〉† is denoted as 〈ψ|, and the inner product of two states |φ〉 and |ψ〉 is
〈φ|ψ〉. Usually, a vector |ψ〉 in a d-dimensional space is written as

|ψ〉 =

d∑
i=1

ai |ei〉 (2)

where {|ei〉} is some orthonormal basis in the state space, the ai’s are complex numbers, and∑d
i |ai|2 = 1.

In a closed physical system, a transformation of a state |ψ〉 is described by |ψ′〉 = U |ψ〉, where
U is a unitary matrix (U†U = I). Under any unitary transformation, 〈ψ′|ψ′〉 = 〈ψ|U†U |ψ〉 =
〈ψ|ψ〉 = 1, which ensures that the new state is still a unit vector.

2.2 Density Operator

A physical system may have an ensemble of states. For example, suppose we know the system is in
state |ψi〉 with probability pi, then the system can be described by the density operator,

ρ =
∑
i

pi |ψi〉〈ψi| (3)
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If a system is in a single state vector |ψ〉, we say that it is a pure state ρ = |ψ〉〈ψ|. Just like a state
vector, a physical system is fully described by ρ, i.e. if we know ρ we know how the system behaves.
This is equivalent to representing a system as an ensemble of state vectors, but the density operator is
mathematically cleaner and more convenient for quantum information.

The density operator has some important properties:

• ρ is positive semi-definite and tr(ρ) = 1.

• Under transformation U , the state ρ→
∑
i piU |ψi〉〈ψi|U† = UρU†.

• tr(ρ2) ≤ 1. Equality holds if ρ is a pure state.

2.3 Reduced Density Operator

Suppose we have two physical systems A and B, and we know the joint state is ρAB . However, if we
only care about what happens in system A, then we can look at the reduced density operator,

ρA = trB(ρAB) (4)

where trB is called the partial trace over system B, defined as

trB(|a1〉〈a2| ⊗ |b1〉〈b2|) = |a1〉〈a2| tr(|b1〉〈b2|) (5)

The partial trace is useful when we want to discard a system. For example, when a system A interacts
with the environment R, we get a joint state ρAR. However, we only care about the behavior of
system A, which is completely represented by the reduced density operator ρA.

Consider two systems A and B. If ρAB is a product state ρAB = ρ ⊗ σ, then ρA = ρ, directly
ignoring B. Thus, the reduced density operator is most useful when ρAB is entangled. Suppose
ρAB = |ψAB〉〈ψAB | is a pure state where |ψAB〉 is entangled. The Schmidt decomposition shows
that there exist orthonormal states {|iA〉} for A and {|iB〉} for B such that

|ψAB〉 =
∑
i

λi |iA〉 |iB〉 (6)

In particular, the reduced density operators ρA =
∑
i λ

2
i |iA〉〈iA| and ρB =

∑
i λ

2
i |iB〉〈iB |. For

example, suppose |ψAB〉 is a fully entangled Bell state 1√
2
(|00〉 + |11〉). Then, the sub-system is

ρA = 1
2 (|0〉〈0|+ |1〉〈1|), a fully mixed state.

2.4 Measurement

Given a physical system in state |ψ〉, we can make a measurement. Quantum measurements are
described by a collection of measurement operators {Mm}. For a state |ψ〉, the probability of measur-
ing outcome m is p(m) = 〈ψ|M†mMm|ψ〉. The probabilities must sum to 1, so

∑
mM

†
mMm = I .

The most common measurement operators are projectors onto the basis vectors, Mm = Pm, so that
the outcome probabilities correspond to the coefficients of |ψ〉.

We can further define Em = M†mMm. The set {Em} is called POVM elements (for Positive
Operator-Valued Measure). Any set of positive operators {Em} that satisfy

∑
mEm = I is a valid

POVM, and the probability of measuring m is

p(m) = 〈ψ|Em|ψ〉 (7)

In the language of density operators, given a state ρ =
∑
i pi |ψi〉〈ψi|, the probability

p(m) =
∑
i

pi 〈ψi|M†mMm|ψi〉 =
∑
i

pitr(|ψi〉〈ψi|M†mMm) = tr(M†mMmρ) = tr(Emρ) (8)

2.5 Quantum Operations

We know that for a closed quantum system, any transformation is described by a unitary matrix U ,
and the state ρ→ UρU†. However, in many cases, the system may interact with another system. For
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example, a state can interact with the environment in a noisy quantum channel, or we can perform
operations to compress a state. Thus, we need to first define a formalism for quantum operations.

Suppose N is an operation on a density matrix ρ, transforming ρ → ρ′ = N (ρ). For a quantum
operation, ρ′ should be a valid density operator that satisfies the properties in Section 2.2, so N
must satisfy 3 properties: (i) linear, (ii) trace preserving: tr(N (ρ)) = tr(ρ) = 1, and (iii) positive:
N (ρ) ≥ 0. The Choi-Kraus theorem shows that N has a Choi-Kraus decomposition as follows:

N (ρ) =
∑
k

NkρN
†
k (9)

where {Nk} are called operation elements that satisfy
∑
kN
†
kNk = I .

This allows us to represent any quantum operations as a set of operation elements {Nk}. For example,
consider a quantum channel that flips a qubit (applying the Z operator) with probability ε. A qubit
state ρ will become ZρZ† with probability ε or remain the same with probability 1− ε. We can model
this operation as a set of 2 operation elements {Nk} = {

√
1− εI,

√
εZ} satisfying

∑
kN
†
kNk = I .

The new state becomes
ρ′ = (1− ε)ρ+ εZρZ† =

∑
k

NkρN
†
k (10)

2.6 Distance Measures

In classical lossy compression, we need a distortion function to measure how close two messages are.
In quantum mechanics, we also need a distance measure to evaluate two quantum states. Given two
density matrices ρ and σ, we use fidelity to determine their similarity,

F (ρ, σ) =
(

tr
√
ρ

1
2σρ

1
2

)2

= ‖σ 1
2 ρ

1
2 ‖21 (11)

where ‖A‖1 is the trace norm ‖A‖1 = tr
√
A†A. The fidelity satisfies several properties:

• Symmetry. F (ρ, σ) = F (σ, ρ).

• 0 ≤ F (ρ, σ) ≤ 1. Equals 1 if and only if ρ = σ.

• If ρ is a pure state, ρ = |ψ〉〈ψ|, then F (ρ, σ) = 〈ψ|σ|ψ〉.
• Invariance under unitary transformation. F (ρ, σ) = F (UρU†, UσU†).

This definition is motivated by the fidelity of two (categorical) random variables X,Y with proba-
bilities (p1, . . . , pn) and (q1, . . . , qn): F (X,Y ) = (

∑
i

√
piqi)

2. The analogy is clear when ρ and σ
commute, i.e. diagonalizable by the same basis. Let the eigen-decomposition be ρ =

∑
i pi |i〉〈i| and

σ =
∑
i qi |i〉〈i|.

F (ρ, σ) =
(

tr
∑
i

√
piqi |i〉〈i|

)2

=
(∑

i

√
piqi

)2

(12)

We are interested in how much a state changes after operationN . Suppose {Nk} is the set of operation
elements, and suppose ρ starts with a pure state ρ = |ψ〉〈ψ|. Then, since N (ρ) =

∑
kNkρN

†
k ,

F (ρ,N (ρ)) = 〈ψ|
(∑

k

Nk |ψ〉〈ψ|N†k
)
|ψ〉 =

∑
k

| 〈ψ|Nk|ψ〉 |2 =
∑
k

|tr(ρNk)|2 (13)

3 Von Neumann Entropy

We know that for a data source giving letter x with probability p(x), the information per letter is
given by the entropy: H(X) = −

∑
x p(x) log p(x). Now, we will extend this to a quantum source.

Suppose the source outputs a quantum state ρx with probability px. The system can be described by
density operator ρ =

∑
x pxρx. Then, we define the Von Neumann entropy as

S(ρ) = −tr(ρ log ρ) (14)
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Let the eigen-decomposition be ρ =
∑
i λi |i〉〈i| where λi are the eigenvalues, then

S(ρ) = −
∑
i

λi log λi = H(λi) (15)

same as the definition of the Shannon entropy. In fact, if the quantum source outputs orthogonal pure
states, i.e. ρx = |x〉〈x| where the vectors |x〉 are orthogonal, then S(ρ) is exactly H(px).

Moreover, we can define the quantum version of relative entropy:

S(ρ‖σ) = tr(ρ log ρ)− tr(ρ log σ) (16)

and the conditional entropy and mutual information between two systems A,B:

S(A|B) = S(A,B)− S(B)

I(A;B) = S(A) + S(B)− S(A,B)
(17)

where S(A,B) = S(ρAB) and S(A) = S(ρA) = S(trB(ρAB)).

Some properties of S(ρ) analogous to the classical entropy:

• S(ρ) = 0 when ρ is a pure state, i.e. we have no uncertainty about the quantum state.

• S(ρ) ≤ log d in a d-dimensional space, similar to H(X) ≤ log |X |.

• S(ρAB) ≤ S(ρA) + S(ρB), with equality when ρAB = ρA ⊗ ρB is a product state,
analogous to H(X,Y ) ≤ H(X) +H(Y ) where equality holds when X,Y are independent.

• Concavity. S(
∑
i piρi) ≥

∑
i piS(ρi).

• S(ρ‖σ) ≥ 0, with equality when ρ = σ.

Some properties of S(ρ) that are specific to quantum,

• S(A) 6≤ S(A,B), unlike classical H(X) ≤ H(X,Y ). This is due to entanglement. If A,B
is in a pure entangled state, then S(ρAB) = 0 but S(ρA) > 0.

• S(
∑
i piρi) ≤ H(pi) +

∑
i piS(ρi), with equality when ρi have orthogonal support.

• Invariance under unitary transformation. S(UρU†) = S(ρ).

4 Quantum Source Coding

We know that in classical source coding, an n-symbol string can be compressed to nH(X) symbols,
and we say that this message contains nH bits of information. Now consider a quantum source that
outputs |ψx〉 (pure state ρx = |ψx〉〈ψx|) with probability px. The question is, how much quantum
information does this source contain, or how many qubits can this source be compressed to?

We can see this as a communication between Alice and Bob. Suppose Alice has a message |ψ〉 =
|ψx1〉 . . . |ψxn〉 obtained from the quantum source, where each |ψx〉 is drawn with probability px.
She compresses |ψ〉 to nR qubits (R < 1), and sends them to Bob. Bob’s task is to decode them and
reconstruct |ψ′〉, which should be very close to |ψ〉. We will use the average fidelity (described in
Section 2.6) to measure how close the reconstruction is.

If these |ψx〉 are mutually orthogonal, then since orthogonal states are perfectly distinguishable, we
can treat each |ψx〉 as an independent symbol. Alice and Bob can simply use the classical compression
scheme, and thus this is equivalent to the classical case.

It is more interesting when the states are not orthogonal. We can still treat them as independent
classical symbols, but this will not be the optimal scheme. We can use the fact that non-orthogonal
states contain redundant information. This allows us to compress the quantum source even more.

The concept of compressing a quantum state is quite different than compressing classical data. So,
we first give an example.
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4.1 Example of quantum state compression

Suppose the quantum source emits state |ψ0〉 = |0〉 and |ψ1〉 = 1√
2
(|0〉+ |1〉) with probability 1/2

each. The density operator is

ρ =
1

2
|ψ0〉〈ψ0|+

1

2
|ψ1〉〈ψ1| =

[
3
4

1
4

1
4

1
4

]
(18)

The eigenvalues are λ0 = cos2 π
8 and λ1 = sin2 π

8 , and orthonormal eigenvectors |e0〉 , |e1〉.
Now, suppose Alice has 3 qubits |Φ〉 = |φ1φ2φ3〉 from the source, where φi can be either |ψ0〉 or
|ψ1〉, and she wants to send only 2 qubits to Bob. |Φ〉 is in an 8-dimensional space, whereas a 2-qubit
system is a 4-dimensional space. Thus, the main idea is to project |Φ〉 onto a 4-dimensional subspace
Λ that best preserves |Φ〉.
The procedure is as follows. Let Λ be the subspace spanned by the 4 vectors with highest probability
{|e0e0e0〉 , |e1e0e0〉 , |e0e1e0〉 , |e0e0e1〉}, and Λ⊥ be the orthogonal subspace. Alice first makes a
measurement based on projectors {PΛ, I − PΛ}. If the outcome is Λ, then the state is projected onto
Λ. Otherwise, the state is in Λ⊥, and Alice simply transforms it to |e0e0e0〉. Now that the state is in
the Λ subspace, Alice can apply a transformation U such that

|Φ′〉 = U |ΦΛ〉 = |ψ′1〉 |ψ′2〉 |0〉 (19)

because Λ is 4-dimensional. She sends the first two qubits |ψ′1〉 |ψ′2〉 to Bob. Bob then appends a |0〉
qubit and applies U† so that U† |Φ′〉 = |ΦΛ〉.
Now, we can calculate the fidelity, i.e. how close |ΦΛ〉 is to the original |Φ〉. With some calculation,
we can see that the fidelity is 0.92, pretty close to 1. Thus, we have compressed the 3-qubit message
to 2 qubits while achieving high fidelity. The intuition behind this is that we chose Λ to be the
“high-probability” subspace, i.e. with high probability, ignoring the component in Λ⊥ does not
decrease the fidelity much. This idea will be used in the next section.

4.2 Schumacher’s Quantum Noiseless Coding Theorem

Let’s assume that each ρx = |ψx〉〈ψx| is a qubit in a pure state, and thus ρn is in a 2n-dimensional
state space. To compress the state, we would like to use some quantum codes that transform ρn to
some state ρ′ in a 2nR-dimensional subspace, which can be represented as nR qubits. nR is the
number of qubits of quantum information carried by the message.

As one would expect, the optimal compression rate R as n→∞ is S(ρ), and the proof is based on
the typical subspace, analogous to the typical sequences. The main idea is that nearly all messages
|ψx1 . . . ψxn〉 will have nearly perfect overlap with the typical subspace, just like most classical
messages are typical sequences.

Given a state ρ, let ρ =
∑
i λi |i〉〈i| be the eigen-decomposition, and S = S(ρ). Take the eigenvectors

|i〉 with eigenvalues

2−n(S+ε) ≤ λi ≤ 2−n(S−ε) (20)

Define the typical subspace Λ as the subspace spanned by these vectors. Similar to the typical
sequences, ρ is measured to be in Λ with high probability: tr(ρPΛ) ≈ 1. Moreover, there are ≈ 2nS

such vectors, so dim(Λ) ≈ 2nS .

Using Alice’s procedure from the previous section, we project the state onto Λ. Since we will measure
outcome Λ with probability close to 1, the error (the probability of measuring Λ⊥) is negligible,
i.e. asymptotically we preserve the state perfectly. Then, a unitary transformation will transform
|ΦΛ〉 to |ψcomp〉 |0rest〉, where |ψcomp〉 is the compressed state in a ≈ 2nS-dimensional subspace,
represented as ≈ nS qubits.

With some calculation, we can show that the average fidelity F → 1 as n→∞. Thus, for large n,
we have compressed the state to nS(ρ) qubits while preserving fidelity.
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4.3 Holevo Information

From the Schumacher theorem, we know how much we can compress a quantum source ensemble
of pure states. However, it is possible that the quantum source outputs a mixed state ρx each time.
Suppose ρ =

∑
x pxρx, where ρx is mixed. Is the quantum information still S(ρ)?

As an example, suppose a quantum source always outputs ρ0 = 1
2I , a mixed state. We first observe

that this source does not encode any information: Bob can reconstruct a message without knowing
anything. However, S(ρ) = S(ρ0) = 1

2 > 0. This examples shows that for a source {px, ρx}, the
amount of quantum information depends on S(ρ) as well as each S(ρx).

The amount of quantum information is given by the Holevo information:

χ(E) = S(ρ)−
∑
x

pxS(ρx) (21)

For the example above where the source always outputs ρ0, χ(E) = 0, consistent with our intuition.
Moreover, if ρx have mutually orthogonal support, then from Section 3 we know χ(E) = S(ρ) −∑
x pxS(ρx) = H(X), which is the same as classical information. This is intuitively correct because

Bob can perfectly distinguish the orthogonal ρx, so it is equivalent to a classical source. Finally, if
each ρx is a pure state, then S(ρx) = 0, i.e. χ(E) = S(ρ), consistent with the Schumacher theorem.

5 Quantum Channels

Next, let’s move on to the communication setting and look at quantum channels. This is of particular
interests

Definition 5.1 A quantum channel is any completely positive trace-preserving (CPTP) operator that
takes in some quantum state ρ and outputs another quantum state ρ′.

You may refer to section 2.5 or Lecture 19 in [2] for a refresher on CPTP operators.

Note that according to this definition, a unitary gate U : ρ→ UρU† is an example of a valid quantum
channel. Another example that adds in a bit randomness could be a channel which applies U on ρ
with probability 3

4 , and outputs a constant state ρ0 with probability 1
1 , i.e. ρ→ 3

4UρU
† + 1

4ρ0. More
generally, a quantum channel could contain a mix of unitary transformations: U : ρ→

∑
x pxUxρU

†
x.

Similar to the classical case, the capacity of a quantum channel can be quantified by the mutual
information between the source X and the measurement outcome Y . However we now have the
option to describe this quantity in terms of either classical information or quantum information, as
we describe in the following subsections.

5.1 Classical Capacity of Quantum Channels

Some may ask why would we ever want to quantify the capacity of a quantum channel with classical
information; this may happen two parties are trying to communicate some classical information
source, but are constraint with a quantum channel. For example, one may want to transfer classical
information through optical fiber, which inevitably requires dealing with quantum states when packing
photons together.

For communication, Alice would like send messages drawn from an ensemble E = {|φx〉 , p(x)},
which can be considered as a quantum alphabet where the probability of drawing |φx〉 is px. Then
Bob will try to get information about x by applying a POVM of his choice on the state he receives.
The accessible information is then defined as

Acc(E) = max
{Fy}

I(X,Y ) = χ(E)

which is the maximum information gain over all POVMs {Fy}.
In general, each state φx can itself be a mixed state, but it can be shown that we are better off when
φx are pure, so we will assume this is the case in the following part. The state that Bob receives can
be mixed though given that the channel can be noisy.
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5.1.1 Noisy Quantum Channel Capacity

Now, we will look at what happens when we send qubits over a noisy quantum channel N . Suppose
Alice’s ensemble is E = {ρx, px}, then the ensemble that Bob receives is E ′ = {N (ρx), px}. The
accessible information that Bob can obtain is χ(E ′).

Alice and Bob would like to choose an ensemble E that maximizes the accessible information through
the channel. The maximum value is

χ(N ) = max
E

χ(E ′) = max
E

max
F

I(X;Y ) (22)

maximized over Alice’s ensemble and how Bob measures it. We call this the Holevo chi of N .

For n channel uses, χ(N⊗n) is the amount of information they can send with n qubits. Alice’s
ensemble is E = {ρ(x1, . . . , xn), p(x1, . . . , xn)}. Then, the classical capacity of the quantum
channel N is

C(N ) ≤ lim
n→∞

1

n
χ(N⊗n) (23)

This is actually much more difficult to analyze than the classical case, because the n qubits are
allowed to be entangled. In general, due to entanglement, χ(N⊗n) can be strictly greater than
nχ(N ). Nevertheless, we can obtain a bound on the classical capacity if we restrict Alice to send
only product states, i.e. E = {ρ(x1)⊗ · · · ⊗ ρ(xn), p(x1, . . . , xn)}, which might actually be a more
realistic setting. In this case, it can be shown that

χ(N⊗n) = max
E

I(Xn;Y n) ≤ max
E

∑
i

I(Xi, Yi) = nχ(N ) (24)

This is now very similar to the classical noisy channel coding theorem. As we can clearly see, χ(N )
is analogous to the channel capacity C(I) over a classical channel. C(I) is the maximum amount of
classical information per channel use in a classical channel, and χ(N ) is the maximum amount of
classical information per channel use in a quantum channel.

5.2 Quantum Capacity of Quantum Channels

As mentioned before, we can also define the quantum capacity of a quantum channel Q(N), for
which a single channel use gives a lower bound, and repetitive uses of the channel can asymptotically
achieve the upper bound. We will not go into the details of the derivation at this point but we would
recommend to check out chapter 10.7 in [3]. The proof involves a quantity called the coherent
information, which leads to the quantum counterpart of data-processing inequality.

The proof also relaxes the previous product-state-only constraint to allow entanglement across channel
inputs. In general, entanglement-assisted quantum communication, together with quantum state
transfer, are considered as the "father and mother" of many interesting corollaries on the achievable
rates.

6 Conclusion

Quantum information theory is a field of active and interesting research given special properties
of quantum mechanics such as superposition and entanglement. There are quantities and laws that
have interpretations analogous to those in the classical setting, such as von Neumann entropy and
Shannon entropy, Holevo information and classical mutual information, typical subspaces and typical
sequences. Similar to the classical world, these concepts are closely related to many of the theoretical
bounds of compression and communication, and idea of random coding has also been widely used in
proving the attainability of these bounds. Very differently from the classical setting though, many of
the fundamental limits in quantum information theory still remain to be explored, and we hope this
survey can be help attract more brilliant people to join the research. Thanks for reading! :)
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